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Abstract
In Radovitzky and Ortiz (Comput Methods Appl Mech Eng 172(1–4):203–240, 1999), an
error estimation technique for nonlinear PDEs is presented to adaptively generating mesh,
based on the reduction of the order of the approximate polynomial. In this paper, following
a similar analysis framework, we propose an a posteriori error estimation for Kohn–Sham
equation by coarsening mesh. An upper bound for the difference of the total energies on two
successively refined meshes is derived by the numerical solutions on two meshes through
an asymptotic analysis, which finally generates an a posteriori error estimation. A variety
of numerical tests show that such an a posteriori error estimation works very well in our
h-adaptive finite element method framework. In addition, to further improve the efficiency,
we solve a Poisson equation instead of the Kohn–Sham equation on the coarsened mesh. The
effectiveness of this improvement is analyzed and numerically examined.

Keywords Electronic structure calculation · Kohn–Sham density functional theory ·
Adaptive finite element method · Ground state energy · Coarsening mesh

1 Introduction

Kohn–Sham model is one of the most widely used models in the computational quantum
chemistry etc. formany-body electronic structure calculations [17,42]. The time-independent
Kohn–Sham model takes the form
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Hψi (r) = εiψi (r), i = 1, 2, . . . , N , (1)

where H stands for the Hamiltonian operator of the quantum system, N is the number of
electrons, and εi and ψi represent the i-th eigenenergy and wavefunction, respectively.

There are two predominant numerical methods for solving the Kohn–Sham equation,
i.e., the plane-wave (PW) expansion methods and the real-space methods. The plane-wave
expansion methods have attracted considerable attention and widely used in the computa-
tional chemistry community [28,40]. One of the main reasons for the popularity of the PW
methods is that simple basis set can be quite effective with the help of pseudopotential,
especially for the periodic systems. However, for non-periodic boundary conditions and/or
domain with complicated geometry, the PW method is not flexible enough. As a result, the
real-space methods have been attracting more and more attention, such as the finite differ-
ence methods [11,12], the finite element methods [6,35,37], and the discontinuous Galerkin
methods [32,42]. Another important issue on numerically solving Kohn–Sham equation is
efficiency, especially when the system size is large. Since the existence of the singularity in
the external potential term, it can be imagined that a large amount of mesh grids are needed
for the quality numerical solutions. To balance the computational resource and the numerical
accuracy, a discretization of Kohn–Sham equation on a nonuniformmesh becomes a feasible
way. The motivation is straightforward, i.e., by using dense mesh grids in the region with
large variation of the numerical solution, while keeping the mesh grids coarse elsewhere,
the total amount of the mesh grids can be controlled effectively, and the numerical solution
with desired accuracy can be expected. Towards this direction, there are several questions
such as how to generate quality nonuniform mesh, and how to efficiently solve the derived
linear system. Fortunately, quality answers can be found from the research of adaptive mesh
methods.

The adaptive mesh techniques mainly include the r -adaptive methods [7,31,39,43] which
redistribute the grid points while keeping the total number of mesh grids unchanged, and
h-adaptive methods [6,10,13] which locally refine and coarsen the mesh, and p-adaptive
methods [3,23] which locally enrich the order of the basis functions. Particularly, for the
application of these adaptive methods in the electronic structure calculations, people may
refer to [18,19] for the adaptive coordinates methods, [6,8,13] for the h-adaptive methods,
and [7,29] for the r -adaptive methods. When combining with the finite element framework,
there are various works devoted to a posteriori error estimates [2,5,9,13,16,20,27,30,38]. It
is worth mentioning that in [34], the authors proposed a mesh adaption scheme based on
an element size distribution function h(r) to minimize the error of the Kohn–Sham problem
with a fixed number of elements in the mesh.

Themesh adaption skill presented in the paper [34] is based on the idea of R. Radovitzky et
al. [36] in which a posteriori error estimation was illustrated for strongly nonlinear dynam-
ics problems. They came up with a posteriori error estimation to a static model which is
obtained by discretizing the initial boundary value problem in time and making it obey a
minimum principle under some conditions. They estimated the error asymptotically between
the finite element solution and a lower-order projection of the solution, as h → 0. Then the
optimal mesh size distribution function h(r) followed from the a posteriori error indicator
was adopted to generate a better mesh. In [6], an h-adaptive finite element framework is
proposed to solve Kohn–Sham equation, in which the local refinement and coarsening of the
mesh grids are handled flexibly and efficiently by using a Hierarchy Geometry Tree (HGT)
data structure. With HGT and an efficient interpolation between two meshes, the numerical
study of the relation between solutions on different meshes becomes very convenient. In this
paper, by taking the advantage of HGT, we follow a similar framework in [36] to generate an
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a posteriori error estimation by coarsening the mesh for our h-adaptive method. The mesh
adaption process is implemented in a similar way to [6]. Moreover, it is noted that the total
ground state energy is the target in solving the Kohn–Sham equation, we would derive an
error indicator for the total ground state energy directly. As a result, an a posteriori error esti-
mation generated from two numerical solutions on different mesh towards the total ground
state energy is proposed in this paper.

Based on the a posteriori error estimation, an h-adaptive finite element scheme is thus
presented for solving the Kohn–Sham equation in this paper. The scheme consists of two
parts. The first one is the solution part, i.e., the widely used self-consistent field (SCF)
iteration. In this paper, only the all-electron calculation for quantum systems is considered,
and both linear and quadratic finite element discretizationswill be studied for theKohn–Sham
equation. The Libxc [33] is utilized for generating the exchange-correlation potentials. To
obtain the Hartree potential, the associated Poisson equation is solved by using the highly
efficient algebraicmultigridmethod. To solve the generalized eigenvalue problem, the locally
optimal block preconditioned conjugate gradient (LOBPCG) method [24,25] is employed.
The second part in our algorithm is the mesh adaption part. In this part, the error indicator
plays a significant role. Regions in the domain are locally refined or coarsened based on the
error indicator that marked on. Precisely, there exist two meshes when implementing the
algorithm, i.e., the current mesh T h and the coarsened mesh T H , which is obtained through
globally coarsening T h for once. By interpolation and projection, information of solution
is communicated between T h and T H , and then the error indicator on T H following our
a posteriori error estimation is generated. However, in simulations this error indicator will
not be used to guide the mesh adaption for the coarsened mesh T H , Instead, we use it to
refine the current mesh T h . We do this based on the following considerations. First of all,
the error indicators can describe the shape of the error on T H , and this also holds for T h if
the numerical solutions on T H are in the asymptotic region of the real solutions. Secondly,
if we use the indicators to guide the mesh adaption of T H , it will result in inefficiency of the
algorithm, since most of the computational sources are occupied by the implementations on
the finemeshes.Meanwhile, themore accurate results on T h only contribute to the evaluation
of the error indicator, which certainly cause a waste of the computational sources. Therefore,
to improve the efficiency of algorithm and make full use of the implementations, the error
indicator will be interpolated to the current mesh T h so as to guide the mesh adaption on T h .
The numerical results show that our h-adaptive method based on the proposed a posteriori
error estimation works well in all the simulations. It is noted that on the coarse mesh, a
sufficiently accurate Kohn-Sham solution is needed to deliver a quality error estimation. Due
to its nonlinearity, it could be time-consuming to solve Kohn-Sham equation on the coarse
mesh, even with a good initial condition. To further improve the efficiency, we follow the idea
in [21] to replace the Kohn-Sham problem by a Poisson problem on the coarse mesh. Then
the solution for this Poisson problem would be used to generate the error estimation. The
effectiveness of this improvement is analyzed and numerically tested in detail in Sect. 5.3.

The remainder of the paper is organized as follows. In Sect. 2, the Kohn–Sham density
functional theory (DFT) eigenvalue problem is introduced and discretized by finite element
method. In Sect. 3,wepresent theaposteriori error estimate for energy based on the numerical
solutions from two successively refined meshes. Then the framework of our adaptive finite
method is demonstrated in Sect. 4 and the numerical experiments are displayed in Sect. 5. In
the end of Sect. 5, a potential improvement of ourmethod is discussed. Finally, the conclusion
and future work part are given in the last section.
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2 Kohn–Sham Equation and Finite Element Discretization

In this section, we consider a molecular system in R3 consisting of M nuclei of charges
{Z1, . . . ZM } located at the positions {R1, . . .RM } and N electrons in the non-relativistic
and spin-unpolarized setting. The ground state solutions of the system can be obtained by
solving the lowest N eigenpairs of the following Kohn–Sham equation

⎧
⎨

⎩

Hψi = εiψi , in �, i = 1, 2, . . . , N ,
∫

�

ψiψ j = δi j , i, j = 1, 2, . . . , N ,
(2)

where δi j is the Kronecker operator. The Hamiltonian H consists of two parts, the kinetic
potential part −∇2/2 and the effective potential part Vef f ([ρ]; r) which is given as follows

Vef f = Vext (r) + VHartree([ρ]; r) + Vxc([ρ]; r), (3)

where ρ is the electronic density which can be written as

ρ(r) =
N∑

i=1

|ψi (r)|2. (4)

The first term of the effective potential is the electrostatic potential due to the nuclei which
takes the following form

Vext (r) = −
M∑

k=1

Zk

|r − Rk | . (5)

The second term is the Hartree potential describing the interacting potential among the
electrons, which can be written as

VHartree([ρ]; r) =
∫

ρ(r′)
|r − r′|dr

′. (6)

And the last term Vxc stands for the exchange-correlation potential, which is caused by
the Pauli exclusion principle and other non-classical Coulomb interactions. The analytical
expression for the exchange-correlation term is unknown. In this paper, we use Local Density
Approximation (LDA) to generate the exchange-correlation potential [33].

Owing to the exponential decay behavior of the ground state wavefunction of the
Schrödinger equation [1,41] , the current computational domain can be reasonably set by
a bounded polyhedral domain � ⊂ R3 in practical computations. Then the variational
form of the Kohn–Sham equation on � can be formulated as: find (εi , ψi ) ∈ R × H1

0 (�),
i = 1, 2, . . . , N , such that

∫

�

{
1

2
∇ψi∇ϕ + Vef f ψiϕ

}

dr = εi

∫

�

ψiϕdr, ∀ϕ ∈ H1
0 (�), (7)

where H1(�) is the standard Sobolev space, H1
0 (�) = {ϕ ∈ H1(�) : ϕ = 0 on ∂�}.

For simplicity, hereafter we denote the Hartree potential VHartree as φ and the set of
wavefunction {ψi } as ψ . Thus the ground state energy can be represented in terms of ψ and
φ

E(ψ, φ) = 1

2

N∑

i=1

∫

�

|∇ψi |2dr +
∫

�

εxc(ρ(ψ))dr −
∫

�

M∑

k=1

Zkρ(ψ)

|r − Rk |dr + EHartree, (8)

123



Journal of Scientific Computing

where

ψi ∈ H1
0 (�), and EHartree = − 1

8π

∫

�

|∇φ|2dr +
∫

�

ρ(ψ)φdr, (9)

and the Hartree potential φ can be obtained by solving the following Poisson equation

− 1

4π
∇2φ(r) = ρ(r), (10)

with some proper boundary conditions. The finite element method is adopted to discretize
the Kohn–Sham equation (2) and the Poisson equation (10). Assume that the finite element
space Vh ⊂ H1

0 (�) is constructed on the bounded domain � partitioned by T = {TK , K =
1, 2, 3, . . . , Nele}, where Nele denotes the total number of elements of T . Then the discretized
variation form of (7) becomes: find (εhi , ψh

i ) ∈ R × Vh ,i = 1, 2, . . . , N such that

∑

TK

∫

TK

{
1

2
∇ψh

i · ∇ϕ + Vef f ψ
h
i ϕ

}

dr = εhi

∑

TK

∫

TK

ψh
i ϕdr, ∀ϕ ∈ Vh . (11)

The k-th wavefunction ψk in the finite element space Vh can be approximated by

ψh
k =

Nbas∑

i=1

ψh
k,iϕi , (12)

where {ϕi },i = 1, . . . , Nbas is the set of basis functions, Nbas denotes the dimension of the
Vh . To find out � = {ψh

k,i }, i = 1, . . . , Nbas , i.e., the coefficients, we need to solve the
variational form of the eigenvalue problem

A� = εB�, (13)

where B is positive-definite and A and B are both Hermitian matrices. The entries of A, B
are defined as

Ai j = 1

2

∫

�

∇ϕi · ∇ϕ j dr +
∫

�

Vef f ϕiϕ j dr, (14)

Bi j =
∫

�

ϕiϕ j dr, (15)

respectively.
Similarly, the Hartree potential φh in space Vh can be represented as

φh =
Nbas∑

i=1

φh,iϕi , (16)

where {φh,i } are coefficients (the values of wavefunctions on the corresponding nodes).
Furthermore, the Poisson equation (10) is discretized into the following form

Pφh = f , (17)

with a Dirichlet boundary condition following the strategy in the paper [7], in which a
multipole expansion approximation is adopted for the boundary values. Here P is a stiffness
matrix with entry

pi j =
∫

�

∇ϕi · ∇ϕ j dr, (18)
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and f is a vector with entry

fi =
∫

�

4πρ(r)ϕi dr. (19)

3 A posteriori Error Estimate Based on an Asymptotic Analysis

In this section, we deliver a posteriori error estimate for Kohn–Sham equation. Some prelim-
inary results are given firstly and then the a posteriori error estimate towards to the ground
state energy is illustrated in this section.

3.1 Some Preliminary Results

The Hamiltonian operator H is given by

H = T + Vext + φ + Vxc. (20)

The boundedness of the kinetic operator T in a bounded domain is obvious. In the following
content in this subsection, we will first give some assumptions to show the boundedness
of the exchange-correlation term following Chen et. al [13]. Then the boundedness of the
external energy is proved by using the Hardy–type inequality [26]. Finally, the boundedness
of the Hartree potential is discussed.

It is noted that Vxc = dεxc/dρ, where εxc is the exchange-correlation energy per unit
volume. The following assumptions [14] give the boundedness of Vxc directly

A1 : |ε′
xc(t)|+|tε′′

xc(t)|∈ P(p1, (c1, c2)) for some p1 ∈ [0, 2], where P is a functional
space defined as

P(p1, (c1, c2))

= { f : ∃ a1, a2 ∈ R such that c1t
p1 + a1 ≤ f (t) ≤ c2t

p1 + a2,∀t ≥ 0}. (21)

A2 : There exists a constant α ∈ (0, 1] such that
|ε′′
xc(t)|+|tε′′′

xc(t)|� 1 + tα−1 ∀t > 0. (22)

To deliver the boundedness of the external energy, we first introduce the Hardy–type
inequality [26].

Theorem 1 Let G be a Carnot group with homogeneous dimension Q ≥ 3 and let φ ∈
C∞
0 (G\{0}), α ∈ R, Q + α − 2 > 0. Then the following inequality is valid

∫

G
Nα | ∇Gφ |2 dx ≥

(
Q + α − 2

2

)2 ∫

G
Nα | ∇GN |2

N 2 φ2dx . (23)

In this paper, we focus on the term
∫

R3 Zk |ψi |2/|r − Rk |dr, with the corresponding
external energy given in the following form

Eext = −
M∑

k=1

∫

�

�∗Zk�

|r − Rk |dr. (24)

Based on the above consideration and Theorem 1, we derive the following inequality.
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Corollary 1 Let Rk is the location of the k-th nuclei with the nuclear charge Zk, ψi is the i-th
wavefunction, then there exists a constant c such that

∫

R3

Zk

|r − Rk | |ψi |2dr ≤ c
∫

R3
|r − Rk ||∇ψi |2dr, (25)

Proof In the abelian case, when G = Rn with the ordinary dilations, one has G = Rn (G is
the Lie algebra of G), so that Q = n. In the Theorem 1, N is the homogeneous norm, which
is a continuous function from G to [0,∞) , satisfies: N = u1/(2−Q), where u is the Folland’s
solution for the sub-Laplacian �G.

Since the problem is set up in the real case, there is no imaginary part, and sub-Laplacian
is just the Laplacian. In this case, we take G = R3, Q = 3,α = 1, β = −1, u = (x)−1 (the
x here will be substituted by (r − Rk) later for the Vext ). So N = |u1/(2−Q)|= |u−1|= |x |.
Then the inequality becomes

∫

R3
|x ||∇ψi |2dx ≥

∫

R3

|∇|x ||2
|x | |ψi |2dx . (26)

Let ψi = N−1ω, ω ∈ C∞
0 (R3\{0}), such that

|∇(N−1ω)|2= N−4|∇N |2ω2 − 2N−3ω∇N∇ω + N−2|∇ω|2. (27)

Multiplying (27) on both sides by N and taking the integration, we have
∫

R3
N |∇�i |2dx =

∫

R3
N−3|∇N |2ω2dx −

∫

R3
�(N−1)ω2dx +

∫

R3
N−1|∇ω|2dx

≥
∫

R3
N−3|∇N |2ω2dx −

∫

R3
�(N−1)ω2dx,

(28)
due to

− �(N−1) = −�(u) ⇒ �(N−1) = �(u). (29)

By plugging (29) into (28), we have
∫

R3
N |∇ψi |2dx ≥

∫

R3

|∇N |2
N

|ψi |2dx −
∫

R3
�uω2dx . (30)

As �u = 0, the inequality (30) can be addressed as
∫

R3
N |∇ψi |2dx ≥

∫

R3

|∇N |2
N

|ψi |2dx . (31)

By plugging x with (r − Rk), the inequality turns to be
∫

R3
|r − Rk ||∇ψi |2dr ≥

∫

R3

|∇|r − Rk ||2
|r − Rk | |ψi |2dr. (32)

So finally we obtain
∫

R3

Zk

|r − Rk | |ψi |2dr ≤ c
∫

R3

|∇|r − Rk ||2
|r − Rk | |ψi |2dr

≤ c
∫

R3
|r − Rk ||∇ψi |2dr.

(33)

Based on the Lemma 2.1 and Corollary 2.2 of [4], it is easy to see that the above inequality
also holds for a bounded domain �. Then the boundedness of the external energy comes
immediately. ��
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Finally, we turn to the boundedness of Hartree potential. The corresponding weak form
for Eq. (10) is defined as follows

1

4π
a(φ, v) = f (v), (34)

where a(φ, v) = ∫

�
∇φ∇vdr, f (v) = ∫

�
ρvdr, v ∈ H1

0 (�).
The boundedness of φ can be discussed as follows. Firstly, we use the V -elliptic property

of the bilinear functional a(·, ·). There exists α > 0 such that ∀v ∈ V ,

a(v, v) ≥ α‖v‖2. (35)

By substituting v with φ in (35), we have

α

4π
‖φ‖2 ≤ 1

4π
a(φ, φ) = f (φ) ≤ ‖ f ‖∗‖φ‖, (36)

that is
α

4π
‖φ‖ ≤ ‖ f ‖∗. (37)

Then by the definition of ‖ f ‖∗ and Cauchy–Schwartz inequality, we can obtain the following
result

‖ f ‖∗ = sup
v∈V

∫

�
ρvdr

‖v‖ ≤ c
‖ρ‖L2‖v‖L2

‖v‖L2

= c‖ρ‖L2 . (38)

Since ‖ρ‖L2 is bounded in �, we have that the term ‖ f ‖∗ is bounded. Consequently, from
the inequality (37), the boundedness of φ is proved.

3.2 A Posteriori Error Estimate

In this subsection, we derive a posteriori error indicator for total energy based on an asymp-
totic analysis. Consider that the numerical solutions can describe the behavior of the exact
solution in the asymptotic region, it makes sense to generate the error indicator in the asymp-
totic region by using the difference between two numerical solutions obtained frommesh T h

and T H .
The energy functional for the Kohn–Sham equation is defined as

E(ψ, φ) = 1

2

N∑

i=1

∫

�

|∇ψi |2dr +
∫

�

εxc(ρ(ψ))dr −
∫

�

M∑

k=1

Zkρ(ψ)

|r − Rk |dr + EHartree,

(39)

where EHartree = − 1
8π

∫

�
|∇φ|2dr + ∫

�
ρ(ψ)φdr.

The discretization form for total energy in the finite element space Vh with the mesh T h

is given by

Eh(ψh, φh) =1

2

N∑

i=1

∫

�

|∇ψh
i |2dr +

∫

�

εxc(ρ(ψh))dr −
∫

�

M∑

k=1

Zkρ(ψh)

|r − Rk | dr

− 1

8π

∫

�

|∇φh |2dr +
∫

�

ρ(ψh)φhdr.

(40)
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Furthermore, we assume that the mesh T H is obtained by globally coarsening the mesh T h

one time. Then the total energy of the system on the mesh T H is given in a similar way with
(ψ̃H , φ̃H ) from the corresponding finite element space VH , i.e.,

EH (ψ̃H , φ̃H ) =1

2

N∑

i=1

∫

�

|∇ψ̃H
i |2dr +

∫

�

εxc(ρ(ψ̃H ))dr −
∫

�

M∑

k=1

Zkρ(ψ̃H )

|r − Rk | dr

− 1

8π

∫

�

|∇φ̃H |2dr +
∫

�

ρ(ψ̃H )φ̃Hdr.

(41)

Next, we assume that ψh
H and φh

H are projections of eigenvectors ψh and Hartree potential
φh from the space Vh onto the space VH , respectively. It should be mentioned that we do not
consider the difference of the eigenvalues between meshes in the following error estimation.
By assuming that the numerical solutions ψ̃H , φ̃H are already in the asymptotic region of
the exact solutions, we have {

ψ̃H = ψh
H + δψh,

φ̃H = φh
H + δφh,

(42)

with the perturbations δψh and δφh .
So the total energy on the mesh T H can be expanded as

EH (ψ̃H , φ̃H ) =E(ψh
H + δψh, φh

H + δφh) = 1

2

N∑

i=1

∫

�

|∇(ψh
H ,i + δψh

i )|2dr

+
∫

�

εxc(ρ(ψh
H + δψh))dr −

∫

�

M∑

i=1

Zkρ(ψh
H + δψh)

|r − Rk | dr

− 1

8π

∫

�

|∇(φh
H + δφh)|2dr +

∫

�

ρ(ψh
H + δψh)(φh

H + δφh)dr.

(43)

Using Taylor expansion, we can rewrite EH (ψ̃H , φ̃H ) in the following form

EH (ψ̃H , φ̃H )

= 1

2

N∑

i=1

∫

�

(|∇ψh
H ,i |2+|∇δψh

i |2+2∇ψh
H ,i∇δψh

i )dr +
∫

�

εxc(ρ(ψh
H ))dr

+ 2
N∑

i=1

∫

�

ε′
xc(ρ(ψh

H ))ψh
H ,iδψ

h
i dr + 2

∫

�

ε′′
xc(ρ(ψh

H ))

(
N∑

i=1

ψh
H ,iδψ

h
i

)2

dr

+
N∑

i=1

∫

�

ε′
xc(ρ(ψh

H ))(δψh
i )2dr −

∫

�

N∑

i=1

M∑

k=1

Zk(|ψh
H ,i |2+|δψh

i |2+2ψh
H ,iδψ

h
i )

|r − Rk | dr

− 1

8π

∫

�

(|∇φh
H |2+|∇δφh |2+2∇φh

H∇δφh)dr +
∫

�

ρ(ψh
H )φh

Hdr

+
∫

�

ρ(ψh
H )δφhdr + 2

N∑

i=1

∫

�

ψh
H ,iδψ

h
i φh

Hdr + 2
N∑

i=1

∫

�

ψh
H ,iδψ

h
i δφhdr

+
N∑

i=1

∫

�

(δψh
i )2φh

Hdr + O((δψh
i )3, (δψh

i )2δφh).

(44)
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Recalling that we want to propose an error indicator to the total energy directly, so in the
remaining part of this section, we consider the error for the energy E which is given in the
discretized form

EH − Eh

= 1

2

N∑

i=1

∫

�

(|∇δψh
i |2+2∇ψh

H ,i∇δψh
i )dr + 2

N∑

i=1

∫

�

ε′
xc(ρ(ψh

H ))ψh
H ,iδψ

h
i dr

+ 2
∫

�

ε′′
xc(ρ(ψh

H ))

(
N∑

i=1

ψh
H ,iδψ

h
i

)2

dr +
N∑

i=1

∫

�

ε′
xc(ρ(ψh

H ))(δψh
i )2dr

−
∫

�

N∑

i=1

M∑

k=1

Zk(|δψh
i |2+2ψh

H ,iδψ
h
i )

|r − Rk | dr − 1

4π

∫

�

∇φh
H∇δφhdr

− 1

8π

∫

�

|∇δφh |2dr + 2
N∑

i=1

∫

�

ψh
H ,iδψ

h
i δφhdr +

N∑

i=1

∫

�

(δψh
i )2φhdr

+ 2
N∑

i=1

∫

�

ψh
H ,iδψ

h
i φh

Hdr +
∫

�

ρ(ψh
H )δφhdr + O((δψh

i )3, (δψh
i )2δφh).

(45)

Now we turn to simplify (45) before estimating the error. It is noted that the orthonormality
constraint functional is defined as

c(ψh
H ) =

∫

�

ψh
H ,iψ

h
H , j − δi j = 0, (46)

then we consider this functional for ψ̃H ,

c(ψ̃H ) = c(ψh
H + δψh)

=
∫

�

(ψh
H ,i + δψh

i )(ψh
H , j + δψh

j ) − δi j

=
∫

�

(ψh
H ,iψ

h
H , j + ψh

H ,iδψ
h
j + δψh

i ψh
H , j + δψh

i δψh
j )dr − δi j .

Owing to ∫

�

ψh
H ,iψ

h
H , j = δi j , c(ψ̃H ) = 0, (47)

we can get

2
∫

�

ψh
H ,iδψ

h
i dr = −

∫

�

(δψh
i )2dr.

That is,

2
N∑

i=1

∫

�

εiψ
h
i δψh

i dr = −
N∑

i=1

∫

�

εi (δψ
h
i )2dr. (48)
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Meanwhile, the variational form of the model yield
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∫

�

∇ψh
H ,i∇δψh

H ,i dr +
∫

�

ε′
xcψ

h
H ,iδψ

h
i dr +

∫

�

φh
Hψh

H ,iδψ
h
i dr

−
∫

�

M∑

k=1

Zkψ
h
H ,iδψ

h
i

|r − Rk | dr =
∫

�

εiψ
h
H ,iδψ

h
i dr,

− 1

4π

∫

�

∇φh
H∇δφhdr +

∫

�

ρ(ψh
H )δφhdr = 0.

(49)

After plugging this into (45), we get the following error form for the energy E

EH − Eh

= 1

2

N∑

i=1

∫

�

|∇δψh
i |2dr − 2

N∑

i=1

∫

�

εi (δψ
h
i )2dr

+ 2
∫

�

ε′′
xc(ρ(ψh

H ))

(
N∑

i=1

ψh
H ,iδψ

h
i

)2

dr

+
N∑

i=1

∫

�

ε′
xc(ρ(ψh

H ))(δψh
i )2dr −

N∑

i=1

∫

�

M∑

k=1

Zk |δψh
i |2

|r − Rk | dr − 1

8π

∫

�

|∇δφh |2dr

+ 2
N∑

i=1

∫

�

ψh
H ,iδψ

h
i δφhdr +

N∑

i=1

∫

�

(δψh
i )2φh

Hdr + O((δψh
i )3, (δψh

i )2δφh).

(50)
Summing up the above, we reach the following result

|EH − Eh |

≤ 1

2

N∑

i=1

∫

�

(

|∇δψh
i |2dr +

∣
∣
∣
∣
∣

N∑

i=1

∫

�

εi (δψ
h
i )2dr

∣
∣
∣
∣
∣

)

+ 2

∣
∣
∣
∣
∣
∣

∫

�

ε′′
xc(ρ(ψh

H ))

(
N∑

i=1

ψh
H ,iδψ

h
i

)2

dr

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

N∑

i=1

∫

�

ε′
xc(ρ(ψh

H ))(δψh
i )2dr

∣
∣
∣
∣
∣

+
N∑

i=1

∫

�

M∑

k=1

Zk |δψh
i |2

|r − Rk | dr + 1

8π

∫

�

|∇δφh |2dr

+ 2

∣
∣
∣
∣
∣

N∑

i=1

∫

�

ψh
H ,iδψ

h
i δφhdr

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

N∑

i=1

∫

�

(δψh
i )2φh

Hdr

∣
∣
∣
∣
∣
.

(51)

Now, we estimate the error of (51) term by term. For the first term, using the definition of
the semi-norm [15], it becomes

N∑

i=1

1

2

∫

�

|∇δψh
i |2dr =

N∑

i=1

1

2

∫

�

|∇(ψh
H ,i − ψ̃H

i )|2dr

= 1

2

N∑

i=1

|ψh
H ,i − ψ̃H

i |21,�.

(52)
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For the second term, we have

2

∣
∣
∣
∣
∣

N∑

i=1

∫

�

εi (δψ
h
i )2dr

∣
∣
∣
∣
∣
≤

N∑

i=1

∫

�

|εi |(δψh
i )2dr

=
N∑

i=1

|εi |
∫

�

(ψh
H ,i − ψ̃H

i )2dr

≤ c3

N∑

i=1

‖ψh
H ,i − ψ̃H

i ‖20,�.

(53)

For the third and fourth terms, we have

N∑

i=1

∣
∣
∣
∣

∫

�

ε′
xc(ρ(ψh

H ))(δψh
i )2dr

∣
∣
∣
∣ ≤

N∑

i=1

∫

�

|ε′
xc(ρ(ψh

H ))||(δψh
i )2|dr, (54)

∣
∣
∣
∣
∣
∣

∫

�

ε′′
xc(ρ(ψh

H ))

(
N∑

i=1

ψh
H ,iδψ

h
i

)2

dr

∣
∣
∣
∣
∣
∣
≤

N∑

i=1

∫

�

|ε′′
xc(ρ(ψh

H ))||ρ(ψh
H )||δψh

i |2dr. (55)

By combining the above two inequalities, it can be derived that

N∑

i=1

∣
∣
∣
∣

∫

�

ε′
xc(ρ(ψh

H ))(δψh
i )2dr

∣
∣
∣
∣ +

∣
∣
∣
∣
∣
∣

∫

�

ε′′
xc(ρ(ψh

H ))

(
N∑

i=1

ψh
H ,iδψ

h
i

)2

dr

∣
∣
∣
∣
∣
∣

≤
N∑

i=1

∫

�

[|ε′
xc(ρ(ψh

H ))|+|ε′′
xc(ρ(ψh

H ))||ρ(ψh
H )|]|δψh

i |2dr.
(56)

Recalling the assumption A1 of local density approximation (LDA) for the exchange-
correlation term, we find

|ε′
xc(t)|+|tε′′

xc(t)|∈ P(p1, (c1, c2)) f or some p1 ∈ [0, 2], (57)

i.e. ∃ a1, a2 ∈ R such that,

a1 + c1t
p1 ≤ |ε′

xc(t)|+|tε′′
xc(t)|≤ a2 + c2t

p1 , (58)

for any t ≥ 0, c1 ∈ R, c2 ∈ [0,∞). So (56) can be expressed as

N∑

i=1

∫

�

[|ε′
xc(ρ(ψh

H ))|+|ε′′
xc(ρ(ψh

H ))||ρ(ψh
H )|]|δψh

i |2dr

≤ (a2 + c2t
p1)

N∑

i=1

∫

�

|ψh
H ,i − ψ̃H

i |2dr

= (a2 + c2t
p1)

N∑

i=1

‖ψh
H ,i − ψ̃H

i ‖20,�,

(59)

where t = ρ(ψh
H ) = ∑N

i=1‖ψh
H ,i‖2.
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The way we deal with the 5-th term is to use the estimation for the external term in
Corollary 1,

N∑

i=1

∫

�

M∑

k=1

Zk |δψh
i |2

|r − Rk | dr ≤ c̃5

∫

�

N∑

i=1

M∑

k=1

Zk |r − Rk ||∇δψh
i |2dr

≤ c5

N∑

i=1

∫

�

∇(ψh
H ,i − ψ̃H

i )|2dr

= c5

N∑

i=1

|ψh
H ,i − ψ̃H

i |21,�.

(60)

Due to φ̃H = φh
H + δφh , the 6-th term becomes

1

8π

∫

�

|∇δφh |2dr = 1

8π

∫

�

|∇(φh
H − φ̃H )|2dr

= 1

8π
|φh

H − φ̃H |21,�.

(61)

Using Cauchy–Schwartz and Sobolev inequalities to solve the 7-th term, we can get

N∑

i=1

∣
∣
∣
∣

∫

�

ψh
H ,iδψ

h
i δφhdr

∣
∣
∣
∣ ≤

N∑

i=1

∫

�

|ψh
H ,iδψ

h
i δφh |dr

≤
N∑

i=1

‖ψh
H ,i‖0,6,�‖ψ̃h

i − ψh
H ,i‖0,�‖φ̃H − φh

H‖0,3,�

≤ c7

N∑

i=1

‖ψ̃H
i − ψh

H ,i‖0,�‖φ̃h − φh
H‖1,�.

(62)

As for the 8-th term, using Cauchy–Schwartz inequality, the term can be updated as

N∑

i=1

∣
∣
∣
∣

∫

�

(δψh
i )2φh

Hdr

∣
∣
∣
∣ ≤

N∑

i=1

∫

�

|(δψh
i )2φh

H |dr

=
N∑

i=1

∫

�

|(ψ̃H
i − ψh

H ,i )
2φh

H |dr

≤
N∑

i=1

‖φh
H‖0,�‖ψ̃H

i − ψh
H ,i‖20,�

≤ c8

N∑

i=1

‖ψ̃H
i − ψh

H ,i‖20,�.

(63)

Combing (52), (53) and (59)–(63) together, and applying the arithmetic-geometric mean
inequality on (62), we finally arrive,
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|EH − Eh |≤1

2

N∑

i=1

|ψh
H ,i − ψ̃H

i |21,�+c3

N∑

i=1

‖ψh
H ,i − ψ̃H

i ‖20,�

+ (a2 + c2t
p1)

N∑

i=1

‖ψh
H ,i − ψ̃H

i ‖20,� + c5

N∑

i=1

|ψh
H ,i − ψ̃H

i |21,�

+ 1

8π
|φh

H − φ̃H |21,�+c7

[
N∑

i=1

‖ψ̃H
i − ψh

H ,i‖20,� +
N∑

i=1

‖φ̃H − φh
H‖21,�

]

+ c8

N∑

i=1

‖ψ̃H
i − ψh

H ,i‖20,�.

(64)
Based on the triangle inequality |EH − E |≤ |EH − Eh |+|Eh − E |, and convergence

orders are O((2hK )2k), O((hK )2k) for |EH − Eh | and |Eh − E |, respectively, it comes

|EH − E | ≤ |EH − Eh |+|Eh − E |

≤ C
∑

T H
k

(
N∑

i=1

‖ψh
H ,i − ψ̃H

i ‖2
1,T H

k
+ 1

8π
|φh

H − φ̃H |2
1,T H

k
+‖φ̃H − φh

H‖2
1,T H

k

)

,

(65)
asymptotically h → 0.

Till now, we get the a posteriori error indicator for the numerical solutions in VH on
the mesh T H . It is worth noting that in simulations, this error indicator will not be used to
guide the mesh adaption for the coarsened mesh T H , instead it is used to refine the current
mesh T h . We do this based on the considerations of efficiency and the assumption that the
numerical solutions on T H are in the asymptotic region of the real solutions such that the
error indicator can describe the shape of the error on the computation domain. Usually, the
a posteriori error estimate is designed for wave functions, while noting that our ultimate
purpose is to reduce the error of the total energy in order to find a good approximation for
the ground state energy. Therefore, in this paper we present an a posteriori error estimate
towards to energy directly.

Based on the above analysis, the error indicator is obtained

ηloc =
N∑

i=1

‖ψh
i − ψ̃H

h,i‖21,T h
k

+ ‖φ̃H
h − φh‖2

1,T h
k

+ 1

8π
|φh − φ̃H

h |2
1,T h

k
, (66)

where ψ̃H
h,i and φ̃H

h represent the interpolations of the i-th wavefunction ψ̃H
i and the Hartree

potential φ̃H to the current mesh, respectively. It is obvious that ηloc is a local error indicator.
We use ηloc on the mesh T h to conduct the refinement of the mesh grids. After that, we get
the new mesh T h1 . By globally coarsening mesh T h1 for once, we can get the mesh T H1 , on
which we can generate a new error indicator.

Remark 1 To give a glance on the comparison of three contributions in the error indicator
(66), we list the following table to show the averaged value for each part in the error indicator
in one step of the simulation of example LiH. It is should mentioned that although the error
from the wavefunctions is dominant, the error from the Hartree potential is important on
resolving the valence electrons in the simulations.
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#Node
∑

i ‖ψh
i − ψ̃H

h,i‖21,T h
k

‖φ̃H
h − φh‖2

1,T h
k

1
8π |φh − φ̃H

h |2
1,T h

k

28,842 3.75e−2 4.19e−5 4.11e−7

Remark 2 From the theorems of Finite Element Method [15], we can get the following
relations

‖ψh − ψ̃H‖0,� ≤ C inf
ϕH∈VH

‖ψh − ϕH‖0,�

≤ C

∥
∥
∥
∥
∥
ψh −

∏

H

ψh

∥
∥
∥
∥
∥
0,�

≤ C(2h)k+1|ψh |k+1,�

= C
∑

T h
K

(2hK )k+1|ψh |k+1,T h
K
,

(67)

where the function ψh ∈ Hk+1(T h
K ) ∩ Vh .

Similarly, we can get the following results

‖ψh − ψ̃H‖1,� ≤ C
∑

T h
K

(2hK )k |ψh |k+1,T h
K
,

|ψh − ψ̃H |1,� ≤ C
∑

T h
K

(2hK )k |ψh |k+1,T h
K
,

‖φh − ψ̃H‖1,� ≤ C
∑

T h
K

(2hK )k |φh |k+1,T h
K
,

|φh − φ̃H |1,� ≤ C
∑

T h
K

(2hK )k |φh |k+1,T h
K
,

(68)

where the function ψh, φh ∈ Hk+1(T h
K ) ∩ Vh .

So, the error for the energy |EH − Eh | can be written as follows

|EH − Eh |≤ C
∑

T h
K

(2hK )2k(|ψh |2
k+1,T h

K
+|φh |2

k+1,T h
K
+(2hK )2|ψh |2

k+1,T h
K
). (69)

4 Algorithm

In this section, the framework depicted in the Algorithm 1 of the proposed numerical method
is illustrated. In general, the method can be divided into two parts, namely, solution part
and mesh adaption part. Particularly, the Kohn–Sham equation is first solved on the current
mesh T h . Then the mesh adaption part will be implemented through a coarsening mesh skill.
Precisely, the current mesh T h is first globally coarsened for once to obtain the coarsened
mesh T H . Then we solve the Kohn–Sham equation again on the coarsened mesh T H . Based
on the presented a posteriori error estimation derived in the previous section, the error
indicator for T h is generated. Then a better mesh T h

new is obtained through refining and/or
coarsening T h according to the interpolated error indicator. After the mesh adaption process,
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the solution part is carried out on the refined mesh T h
new and then the mesh adaption part will

be adopted again. This is actually an iterative method, and the algorithm will be ended up
once the convergence criterion is satisfied. We will demonstrate these two parts separately in
the following contents.

Algorithm 1 Algorithm for obtaining the total ground state energy

Require: A finite element space V 0
h on the initial mesh T0, and an initial guess for wavefuctions {ψ0

i , i =
1, ..., N }.

1: Generate density from {ψ0
i }.

2: SCF iterations to solve the Kohn–Sham equations in V 0
h and then obtain the eigenpairs {ψi , εi } and the

total ground state energy Enew
tot .

3: while |Etot − Enew
tot | > tol do

4: Etot = Enew
tot .

5: Implement Algorithm Mesh adaption (Algorithm 3).
6: Update the wavefunctions, density and Hartree potential in the updated finite element space Vnew

h .
7: SCF iterations to solve the Kohn–Sham equations in Vnew

h and obtain the eigenpairs {ψnew
i , εnewi } and

the total ground state energy Enew
tot .

8: end while
9: Output the total energy Enew

tot .

4.1 Solution Part

In the Kohn–Sham equations, the Hamiltonian is determined by the density function ρ(r).
Particularly, theHartree potential VHartree and the exchange-correlation potential Vxc depend
on the electron density. However, the electron density is obtained from the wavefunctions
which can only be achieved by solving the Kohn–Sham equation. Accordingly, to solve the
Kohn–Sham equation the self-consistent filed (SCF) methods have to be adopted. Indeed, in
the mesh adaption part, we also have to solve the Kohn-Sham equation to get the solutions
on the coarsened mesh. The solution part on a fixed current mesh is described in Algorithm
2.

Algorithm 2 Solution Part: SCF iteration to solve KS equations
Require: T OL, MIT ER
1: while |En+1 − En | > T OL or i ter < MIT ER do
2: Generate Hartree potential by solving the associated Poisson equation.
3: Discretize the eigenvalue problem Hψi = εiψi .
4: Solve the generalized eigenproblem, then {ψi } and {εi } are obtained.
5: Update the density.
6: i ter + +
7: end while

To start the algorithm, an initial guess ρ0(r) for density should be given in the initial
finite element space V0 associated with the basis {ϕi }. With ρ0(r) we can obtain the Hatree
potential φ(r) by solving the following Poisson equation

− ∇2φ(r) = 4πρ0(r), (70)
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Fig. 1 One mesh adaption step in the simulation for the helium atom: the left mesh T h is the initial mesh.
Globally coarsening T h , we can get mesh T H in the middle. Finally, after this mesh adaption process, the
new mesh in the right T̃ h is obtained

with a proper Dirichlet boundary condition obtained following the strategy in the paper [7], in
which a multipole expansion approximation is adopted for the boundary values. Meanwhile,
the exchange-correction potential Vxc(r) is obtained through the library Libxc [33]. As a
result, the Hamiltonian is generated and then the Kohn–Sham equations are handled with the
finite element discretization which results in the following eigenvalue problem

Ax = λMx, (71)

where

Ai j = 〈ϕi |Hϕ j 〉, Mi j = 〈ϕi |ϕ j 〉.
To solve such an eigenvalue problem, the locally optimal block preconditioned conjugated
gradient (LOBPCG) method [24,25] is used.

Once the eigenvalue problem is solved, the new electron density ρ is generated from the
wavefuncitons and then the potentials VHartree and Vxc are updated from the new density. The
procedure will be repeated until the criterion for terminating the SCF iterations is satisfied.
Subsequently, the mesh on the physical domain � is adaptively refined based on our mesh
adaptionmethodwhichwill be described in detail in the next section. After themesh adaption
procedure, the finite element space Vh will be updated, and then the density function is
interpolated from the old finite element space to the updated finite element space. With the
interpolated density function, we solve the Kohn–Sham equation again and repeat the above
process. As long as the difference of the densities between the two adjacent meshes is small
enough, the program will be interrupted.

4.2 Mesh Adaption Part

In themesh adaption procedure, an error indicator is generated from the comparisons between
the information on the original mesh T h and that on the coarsened mesh T H . Then the error
indicator is used to indicate places to be refined or coarsened on T h . Figure 1 describes the
variation of the mesh in one mesh adaption process during the simulation of helium atom.
The workflow for mesh adaption procedure is demonstrated in Algorithm 3

Once the SCF iteration ends upon the mesh T h , T h would be coarsened globally for once
and from which we obtain T H . It is noted that in the practical simulations, the root elements
may exist in T h which results in that these elements will not be coarsened and finally kept in
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Algorithm 3 Algorithm for mesh adaption

Require: A mesh T h with wavefunctions {ψh
i } on it.

1: Global coarsening the mesh for once, obtain T H .
2: Project ρh to ρH on T H .
3: SCF iteration on T H to solve Kohn–Sham equations on T H , obtain {ψ̃H

i }, {ε̃Hi }.
4: Generate the indicator ηhloc on each element of T h from Eq. (66).

5: Adaptively refine mesh T h .
6: Update the finite element space Vh and {ψh

i } on the new mesh.

T H . Nevertheless, this phenomenon is acceptable since the error on these elements is already
small enough and thus will not affect the accuracy of our algorithm.

The electron density ρh on mesh T h is projected to ρH on T H . Then we will use the
density ρH to generate the Hamiltonian on the coarse mesh. Note that, although the Hartree
potential V H

Hartree on T H is also obtained through solving the Poisson equation (70), we
no longer need the multipole expansions to approximate the Dirichlet boundary condition.
Alternately, the Hartree potential Ṽ H

Hartree on T H which is the projection of V h
Hartree on

mesh T h will be used to generate the boundary condition for the Poisson equation (70). This
makes sense since the Hartree potential on the mesh T h is closer to the real Hartree potential
than it on T H . The exchange-correlation is obtained immediately from the density ρH by
the library Libxc.

After the evaluation of the Hamiltonian, the wavefuctions {ψh
i } are first projected to the

finite element space built on the coarse mesh T H . The projected wavefuncions {ψh
H ,i } are

then set as the initial guess for the Kohn–Sham equation on mesh T H . Then the Kohn–Sham
equation is solved and thus we get the wavefunctions {ψ̃H

i } and the Hartree potential φ̃H . To
obtain the error indicator, {ψ̃H

i } and φ̃H are thus interpolated back as {ψ̃H
h,i } and φ̃H

h to the

current mesh T h , respectively. Therefore, the error indicator is obtained from the Eq. (66).
With this error indicator, the adaptive process is carried out onmesh T h . After mesh adaption,
the electron density will be updated on the new mesh.

It is worth mentioning that the mesh adaption part only contributes a small part of the total
computational cost. This can be explained in the following aspects: (1) the number of degree
of freedoms on the coarsened mesh T H is around 15% of the amount of the current mesh
T h ; (2) we have a qualified initial guess for the Kohn–Sham equation on the coarsened mesh
which is the projection of the wavefuctions on the current mesh T h to the coarsened mesh
T H . As a result, the computational cost for the mesh adaption part only occupies a small
proportion of that for the total algorithm, which is illustrated in Table 1 in the next section.

5 Numerical Examples

In this section, the convergence of the proposed method is examined first by the all-electron
calculations of several atoms. Then the reliability of the method is demonstrated by the all-
electron calculations of some molecules. Furthermore, the CPU time for the algorithm is
considered and an improvement is given. All simulations are implemented by using a C++
library Adaptive Finite Element package for the AB-Initio Calculations (AFEABIC). In this
library, the Libxc [33] is employed for the generation of the exchange-correlation potential
and energy. The physical domain is set as [−20, 20]3 a.u. in the simulations unless otherwise
specified. The wavefunctions are initialized randomly on the finite element space established
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on a uniform mesh of the physical domain. The tetrahedral elements are used in all the
simulations. With the proposed method, the mesh will be refined adaptively.

5.1 Total Ground State Energy Simulations

5.1.1 Hydrogen

The governing equation for the hydrogen atom can be described as

[

−1

2
∇2 + 1

r

]

ψ(r) = Eψ(r). (72)

This is a linear equation and the energy for the exact ground state is EGS = −0.5 a.u.. To
demonstrate the convergence order of our algorithm, both the linear finite element method
and the quadratic finite element method are used to test this example. The numerical results
are shown in Fig. 2. The numerical convergence order is showed to agree with the theoretical
convergence order by linear finite element method (O(h2)) and quadratic finite element
method (O(h4)).Moreover, the smaller the tolerance for the error indicator, themore accurate
the solution is. This shows the reliability of the presented method. Besides, an interesting
fact is observed that the convergence rate is increasing as the increase of the number of mesh
grid. This fact is proved to be the result of mesh adaption process. As the mesh is refined on
the regions with large error and coarsened on the regions with small error, a better result is
obtained although the number of mesh grids increases little.

Fig. 2 Convergence rate of the ground state energy with linear AFEM and with quadratic AFEM for the
hydrogen system
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Fig. 3 Numerical results for Helium atom (left) and Lithium atom (right). Both linear and quadratic FEM
are tested. The reference values for the total ground state energies are EHe = −2.83450810 a.u., ELi =
−7.334545576 a.u., respectively

5.1.2 Helium and Lithium

Following are the simulations for the Helium atom and lithium atom. Unlike the Hydrogen
atom case, the governing equation becomes nonlinear and thus should be solved by SCF
(self-consistent filed).

(

−1

2
∇2 − Z

r
+ VHartree + VXC

)

ψi = εiψi (73)

where Z = 2 for Helium atom and Z = 3 for Lithium atom. On the one hand, compared
to the linear finite element method, Fig. 3 shows that the quadratic adaptive finite element
method converges faster. Besides, both the convergence order for Helium atom and Lithium
atom meet the theoretical prediction. Since analytical solutions are not available for helium
atom and lithium atom, the total ground state energies from a very fine mesh using quadratic
finite element discretizations are used for references to calculate the approximation errors.

These simulations demonstrated that our method works well for the nonlinear and multi-
electron orbital case.

5.1.3 Benzene

To illustrate the practical applicability of the proposed method, we test the total ground state
energy for a benzene molecule (C6C6) with 42 electrons. The computational domain is set
as [−25, 25]3 a.u.. The convergence curve for the total energy is shown in the left of Fig. 4,
from which we observe that the total energy converges to −230.623 a.u., which is very close
to the referenced value −230.859 a.u. [22]. The isosurface for the density of the function is
displayed in the right of Fig. 4.

5.2 The All-Electron Simulations of theMolecules: H2 and LiH

The first simulation of themolecule contributes to the hydrogenmolecule. From valence bond
theory, there is only one bond in the molecule. To calculate its ground state, the all-electron
calculation is implemented. The bond length of H2 is set from 1 to 1.8 bohr. Note that the
experimental value is 1.4011 bohr [22]. The numerical results are demonstrated in Fig. 5,
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Fig. 4 Left: convergence curve for the energy of the molecule C6C6. Right: the density profile of C6C6

Fig. 5 The results for the H2. Top left: the sliced mesh of the whole domain [−20, 20]3 one the X-Y plane.
Top right: the sliced mesh of the small domain [−2, 2]3 on the X-Y plane. Bottom left: the density profile for
the H2 molecule. Bottom right: the relationship between total energy and H2 bond length

and the following observations can be made from the results: (1) with our adaptive method,
the regions with large variation of the electron density are successfully resolved by mesh
grids, see Fig. 5 (top right). (2) It can be read from Fig. 5 (bottom right) that the optimal bond
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Fig. 6 The results for the LiH. Top left: the sliced mesh of the whole domain [−20, 20]3 one the X-Y plane.
Top right: the sliced mesh of the small domain [−2, 2]3 on the X-Y plane. Bottom left: the density profile for
the LiH molecule. Bottom right: the relationship between total energy and LiH bond length

length of H2 from our calculation is around 1.4 bohr which is a good approximation to the
experimental data.

Subsequently, we consider the all-electron calculation of the lithium hydride (LiH). The
bond length of LiH is set from 2.6 to 3.4 bohr in the simulations. The numerical results
are demonstrated in Fig. 6. Similar with the experiments of H2 molecule, from Fig. 6 we
can observe that the regions with large variation of density are resolved by mesh grids and
that the optimal bond length in our calculation is around 3.0 bohr which agrees with the
experiment data 3.014 [22]. Furthermore, since the all-electron calculation is adopted, it is
expected that the electron density around the lithium nucleus is larger than that around the
hydrogen nucleus which is obviously seen from Fig. 6 (bottom left). Moreover, from Fig. 6
(top right) the density of the mesh grids in the vicinity of the lithium nucleus is more intense
than that around the hydrogen nucleus which shows that the variation of the electron density
around the lithium nucleus is larger.

Remark 3 To better resolve the external potential, an auxiliary part

C
∑

Nuc

1

|r − RNuc|
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where C is a constant, is added to the error indicator. It is noted that the solutions to the
Kohn–Sham equation are generally smooth, while the external potential terms are singular,
which brings trouble in solving the equation. In the regions where the singularities located,
the external potential is dominant in the Hamiltonian. Therefore, to describe the Hamiltonian
better, the external potential should be carefully handled by the mesh. With the auxiliary part
added to the error indicator, the mesh grids will be dense around the singular regions and the
closer to the singularity, the denser the mesh grids. Furthermore, by controlling the value of
the constant C , it is guaranteed that the error indicators at regions around the singularities
will be affected only and that at other places will still be dominated by (66).

5.3 CPUTime Comparisons and an Improvement

The CPU time of the algorithm is studied in the simulation of the total energy for the ground
state of a helium atom. In Fig. 7, the last dashed line describes the variation of the number
of mesh grid in the simulation. From this figure, we can see that the most time-consuming
part of the algorithm is the SCF iterations for solving the Kohn–Sham equation, including
the solution on the current mesh and corresponding coarsened mesh. For the first five steps,
the CPU time for SCF on current mesh and on coarsened mesh increase proportional to the
number of the mesh grids. In this stage, the CPU time percentage for the SCF iteration on the
coarsened mesh is around 12%, and that on the current mesh is around 88%. This data means
that the mesh adaption procedure only attributes a small part to the computational cost of the
total algorithm in the beginning. For the last five steps, we observe that the CPU time for the
calculations on the current mesh decrease rapidly in spite of the increment of the number of
mesh grids. However, the CPU time for the SCF iterations on the coarsened mesh changes

Fig. 7 The CPU time for each pact of the algorithm for solving the ground state of a helium atom. The
eigensolver is used to solve the KS equation on the coarsened mesh
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slightly, and as a result, the CPU time percentage for the mesh adaption part is increasing.
This phenomenon can be explained: (1) it is noted that the number of mesh grids tends to be
stable after the fifth adaptive step, which implies that the refined region of the mesh becomes
small. Thus, the adjacent meshes are quite close. Consequently, the solutions on the two
meshes are almost the same. As a result, the number of SCF iterations in each adaptive time
step decreases to two even one since the initial guess is already near to the solution. So the
CPU time for the SCF iterations on the current mesh decreases rapidly; (2) although the
projected solution provides a good initial guess for the coarsened mesh, numerical results
show that it still takes at least three iterations to resolve the compatible error generated from
interpolation and projection. Therefore, the CPU cost of the mesh adaption part for the last
several steps is almost unchanged. In total, the CPU time percentage for the mesh adaption
procedure is about 15%, which is acceptable to us. However, the efficiency of the algorithm
is still expected to be further improved.

To further improve the efficiency of our method, we try to find an alternative way to solve
the Kohn–Sham equation in the coarsened mesh so that the amount of computational cost
for mesh adaption procedure will decrease. Let us consider the Kohn–Sham equation

(

−1

2
∇2 + Vef f

)

ψ = εψ, (74)

again. The corresponding variational form should be

1

2

∫

�

∇ψ∇vdr −
∫

�

Vef f ψvdr = ε

∫

�

ψvdr, ∀v ∈ V . (75)

Now let us restrict the equation to the finite element space VH built on mesh T H and suppose
(εH , ψH ) be the projection of (ε, ψ) onto T H , which can represented as

{
ε = εH + δεH ,

ψ = ψH + δψH .
(76)

If we move the effective potential term together with the wavefunction Vef f ψ to the right
hand side, and then take the right hand side as the known source term, we obtain the following
Poisson equation on the mesh T H

− 1

2
∇2ψ̃H = εψ + Vef f ψ. (77)

Plugging (76) in the Poisson equation, we get

−1

2
∇2ψ̃H = (εH + δεH )(ψH + δψH ) + Vef f (ψ

H + δψH ).

= (εH + Vef f )ψ
H + O(δψH , δεH , δψH δεH ),

(78)

where O(δψH , δεH , δψH δεH ) = εH δψH + δεHψH + δεH δψH + Vef f δψH . Adding
1
2∇2ψH to both sides of the above formula, we have

− 1

2
∇2(ψ̃H − ψH ) = (εH + Vef f )ψ

H + 1

2
∇2ψH + O(δψH , δεH , δψH δεH ). (79)
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Then we multiply the formula (79) by v ∈ V , and apply integration by part, we can obtain

1

2

∫

�

∇(ψ̃H − ψH )∇vdr =
∫

�

εHψHvdr +
∫

�

(

−1

2
∇ψH∇v + Vef f ψ

Hv

)

dr

+
∫

�

O(δψH , δεH , δψH δεH )vdr.
(80)

We define bilinear form

B(e, v) =
∫

�

εHψHvdr +
∫

�

(

−1

2
∇ψH∇v + Vef f ψ

Hv

)

dr, (81)

where e is residual of the wavefuction ψH for the Kohn–Sham equation on the space VH .
Let us assume �̃n be the support of the nodal function θn consisting of the patch of

elements containing the vertex xn (
∑

n∈N θn(x) ≡ 1, x ∈ �̄), and let v = ψ̃H − ψH , then
we have ∣

∣
∣
∣
1

2

∫

�̃n

∇(ψ̃H − ψH )∇vdr

∣
∣
∣
∣

=
∣
∣
∣
∣−

1

2

∫

�̃n

∇2(ψ̃H − ψH )dr

∣
∣
∣
∣

=
∣
∣
∣
∣
1

2
|ψ̃H − ψH |2

2,�̃n

∣
∣
∣
∣

=
∣
∣
∣
∣B(en, ψ̃

H − ψH ) +
∫

�̃

O(δψH , δεH , δψH δεH )δψ̃Hdr

∣
∣
∣
∣ ,

(82)

where en = e|�̃. Moreover, if ψH stays in the asymptotic region of the KS equation, the
integral term in the above formula can be neglected since it is a high order term. As a result,

∣
∣
∣
∣
1

2

∫

�̃n

∇(ψ̃H − ψH )∇vdr

∣
∣
∣
∣

=
∣
∣
∣
∣B(en, ψ̃

H − ψH ) +
∫

�̃

O(δψH , δεH , δψH δεH )δψ̃Hdr

∣
∣
∣
∣

≤ C̃‖en‖�̃n
‖ψ̃H − ψH‖�̃n

≤ C‖|en |‖�̃n
|ψ̃H − ψH |2,�̃n

.

(83)

By defining the error estimator associated with the subdomain �̃ as

ηn = ‖|en |‖�̃n
, (84)

we can get the following relation using the subdomain residual method,

c1ηn ≤ ‖ψ − ψH‖ ≤ c2ηn, (85)

where c1, c2 are constants.
Finally, we have the following theorem

Theorem 2 If ψH stays in the asymptotic region of the Kohn–Sham equation, we have the
following relationship between ψ̃H and ψH

|ψ̃H − ψH |2,�̃n
≤ Cηn, (86)

where C is a constant.
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Fig. 8 The CPU time for each pact of the algorithm for solving the ground state of a helium atom. The solver
on the coarsened mesh consists of two parts: the first five step we use an eigensolver, and for the remained
steps we use the Poisson solver

Table 1 CPU time comparisons between solving KS equation on coarsened mesh and solving Poisson on
coarsened mesh

Method Energy Ttot Tadapt Padapt (%)

KS-coarsening −2.83346 1123.8 169.8 15.11

Poisson-coarsening −2.83347 1067.6 97.0 9.09

Energy means the calculated ground state energy of the helium atom. Ttot stands for the CPU time of the
whole algorithm, and Tadapt represents the CPU time for the mesh adaption part of the whole algorithm

From Theorem 2, we can conclude that the solution to the Poisson equation (79) can provide
an effective approximation to the Kohn–Sham equation.

Based on above analysis, the solver for KS equation on the coarsened mesh is replaced
from eigensolver to a Poisson solver after the fifth adaptive step. The CPU time for each part
is displayed in Fig. 8 and the comparison between the original method and the new one is
shown in Table 1. The reason why we do not use the Poisson solver from the beginning is
that the Poisson solver generates an approximation only when the solution on the current
mesh is good enough, i.e., the solution on the current mesh should stay in the asymptotic
region of the KS equation. And this requirement will be satisfied if the number of mesh grids
of the current mesh behaves stable. As displayed in Fig. 8 and Table 1, the number of mesh
grids and the total ground state energy for the final mesh are almost the same with the former
method, while the CPU time percentage decreases from 15.11 to 9.09%. On the other hand,
we also can find that the total CPU time changes slightly. Nevertheless, it is expected that
the lager the scale of the quantum system, the more the total CPU time decreases since more
SCF iterations are needed for solution on the coarsened mesh. Therefore, according to this
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consideration and these results, the Poisson solver which takes less computational cost can
replace the eigensolver on the coarsened mesh for solving the KS equation.

6 Conclusions

In this paper, we developed an h-adaptive finite element method based on a posteriori error
estimation to solve the Kohn–Sham equation. The SCF iteration is used for the nonlinear
eigenvalue problem, and the LOBPCG method is adopted as the solver for the linear eigen-
value problem at each iteration. To improve the efficiency of the finite element solver, an
h-adaptive method based a posteriori error estimation is introduced. The error indicator is
generated from the difference between the solution information on the current finite element
space and that on the finite element space built on the coarsened mesh. With such an error
indicator, we refine or coarsen the current mesh to obtain a new mesh which can resolve the
equations better.

Several numerical experiments including simulations of atoms and molecules have been
conducted by using our method. The numerical results show that our solver is convergent and
reliable. Specifically, we compare the linear finite element discretization and the quadratic
finite element discretization in the simulations of atoms, and the results indicate that the
convergence order of the method agree with expected. Moreover, during the calculation of
the relationship between the bond length and the total ground state energy for the molecules,
after the nuclei move, the distribution of the mesh grids can be improved accordingly with the
presented h-adaptive method. That means the quality of the mesh grid is improved dynam-
ically in our solver, which is more efficient than remeshing when a fixed mesh is no longer
appropriate. To further improve the efficiency of our method, we solve the Poisson equa-
tion (77) instead of the Kohn–Sham equation in the coarsened mesh when the solution of
the Kohn–Sham equation on the coarsened mesh has fall into the asymptotic region of the
equation. The simulation shows that the new method takes less computational cost than the
old one without loss of accuracy.
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