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Abstract

Chemical accuracy serves as an important metric for assessing the effectiveness of the numerical method
in Kohn–Sham density functional theory. It is found that to achieve chemical accuracy, not only the
Kohn–Sham wavefunctions but also the Hartree potential, should be approximated accurately. Under
the adaptive finite element framework, this can be implemented by constructing the a posteriori error
indicator based on approximations of the aforementioned two quantities. However, this way results in a
large amount of computational cost. To reduce the computational cost, we propose a novel multi-mesh
adaptive method, in which the Kohn–Sham equation and the Poisson equation are solved in two different
meshes on the same computational domain, respectively. With the proposed method, chemical accuracy
can be achieved with less computational consumption compared with the adaptive method on a single
mesh, as demonstrated in a number of numerical experiments.

Keywords: Chemical accuracy; Kohn–Sham equation; Adaptive finite element method; Multi-mesh
method

1. Introduction

The Kohn–Sham density functional theory plays an important role in the area of quantum physics,
condensed matter, and computational chemistry. For a quantum system containing Nnuc nuclei and Nele

electrons, the ground state can be obtained by solving the lowest Nocc eigenpairs (εi, ψi)i=1,...,Nocc
from

the Kohn–Sham equation(
−1

2
∇2 + Vext(r) + VHar(r) + Vxc(r)

)
ψi(r) = εiψi(r), i = 1, . . . , Nocc, (1)

where Nocc = Nele/2 if Nele is even and (Nele + 1)/2 if Nele is odd is the number of occupation number.
Vext(r) = −∑I ZI/|RI − r| represents the external potential due to the nuclei located at {RI}I=1,...,Nnuc

with charge {ZI}I=1,...,Nnuc
. VHar(r) stands for the Hartree potential which describes the interaction

among electrons. Vxc(r) is the exchange-correlation potential used to absorb the difference between the
Kohn–Sham one-body non-interactive system and the real many-body interactive system.

Various numerical methods have been presented to solve the Kohn-Sham density functional theory
[27, 1, 29, 2, 4, 18, 21, 5]. To verify the effectiveness of these methods, the ability to achieve chemical
accuracy has been a commonly accepted criterion. The chemical accuracy is generally considered as
1 kcal/mole accuracy (≈ 1.59 × 10−3 Hartree/particle) with respect to the total energy [20]. In this
work, we consider the chemical accuracy as the total energy to achieve the accuracy within 1 × 10−3

Hartree/atom compared with the energy obtained from reference software.
Due to the rapid variations of the wavefunctions around the nuclear positions, a uniform discretization

of the Kohn–Sham equation in the computational domain would result in an unaffordable implementation,
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especially in all-electron calculations. The adaptive finite element (AFE) methods which enable different
mesh sizes are favored in solving the Kohn–Sham equation. Furthermore, the ability of handling the
non-periodic boundary condition and complex computational domain makes AFE methods more and
more attractive in electronic structure calculation in recent decades [23, 2, 18, 3, 15, 5, 17].

There have been lots of efforts for efficiently achieving chemical accuracy by the adaptive finite
element methods, such as using the high-order finite elements [13, 18, 21, 15, 5, 9], high-order numerical
quadrature [21, 5], etc. In addition, an accurate approximation to the Hartree potential is shown to be
key in achieving chemical accuracy [23, 18, 21, 5]. Under the finite element discretization framework, the
Hartree potential is generally obtained from solving a Poisson equation on the same computational domain
as the Kohn–Sham equation. It is noted that the decay of Hartree potential in the infinity behaves as 1/r
which is much slower than the exponential decay of the wavefunctions, hence the homogeneous boundary
condition in the finite computational domain for the Hartree potential may introduce large errors in
the ground state energy [5]. To efficiently reduce such errors, the multipole expansion of the Hartree
potential [12] can be used to generate an inhomogeneous boundary condition for the Poisson equation. It
is noted that to keep using the homogeneous boundary condition, there also have been several works
in the literature. The neutralization techniques have been studied [13, 19] where an additional source
term is introduced in the Poisson equation leading an r−2 or even faster decay of the potential such that
the homogeneous boundary condition makes sense. Another approach is adopting a sufficiently large
computational domain for the Poisson equation as in [18], wherein the diameter for the computational
domain of the Poisson equation is around 100 times larger than that of the Kohn–Sham equation. In
such a way, the zero boundary condition is adequate for the Hartree potential.

As stated in [21, 5], one key issue in accurately approximating the Hartree potential is to choose an
appropriate finite element space for the Poisson equation. Notably, the electron density, which represents
the sum of squared wavefunctions and constitutes the right hand side of the Poisson equation, belongs to
a finite element space twice the polynomial degree of that used for the wavefunctions. This suggests a
preference for a larger finite element space in the quest to find the Hartree potential. Various approaches,
including using a finer mesh with the same polynomial degree as the Kohn–Sham equation [23] or doubling
the polynomial degree [21, 5], have shown improvements in the total energy calculations. However, it
should be pointed out that these approaches are far from perfect, due to the reason that the approximate
space for the Hartree potential in each approach is inherited from the one for wavefunctions. This
space may not ideally suit the Hartree potential’s distinct behaviors in comparison to wavefunctions.
A potential remedy for creating a suitable space accommodating both the Hartree potential and the
wavefunctions is the use of an a posteriori error indicator [25], considering contributions from both the
Poisson and Kohn-Sham equations. While this approach can yield accurate results, it also introduces
significant computational complexity, resulting from the substantial number of degrees of freedom defined
on a single mesh, driven by differences not only in decay behavior but also in the magnitude of the
error indicator between the two quantities. In light of these observations, a practical solution, that is,
the multi-mesh adaptive method, to simultaneously address accuracy and complexity concerns emerges
through a combination of the aforementioned approaches. This involves the adaptive design of separate
approximate spaces for wavefunctions and the Hartree potential. With such an idea, the numerical
accuracy issue can be handled well since the approximate space for each variable is tailored according to
its own feature, while the complexity is effectively reduced by replacing a large system of linear equations
with two smaller ones.

Distinct from the method that solves all the equations on the same mesh (hereafter we call such
method single-mesh method), the multi-mesh adaptive method (abbreviated as multi-mesh method)
is to solve different variables with different regularity on different meshes in the same computational
domain. The quality of mesh associated with a certain variable can be improved from the mesh adaption
process similar to the mesh adaption in the single-mesh method. In this study, the implementation of the
multi-mesh method is based on the framework proposed in [14]. Within this framework, mesh adaptation
is achieved by locally refining or coarsening the element, a process known as h-adaptation. A similar idea
can be found in [8, 22] where p-adaption of the finite element space is also considered. The multi-mesh
method has been successfully applied to various fields and models, such as in simulating the two- and
three-dimensional dendritic growth [11, 6], the wetting and spreading problems [7], the photonic band
structure optimization [28], the eigenvalue problems [10], etc. With the multi-mesh method, chemical
accuracy is able to be achieved since both wavefunctions and the Hartree potential are solved on different
but qualified spaces.

An anticipated advantage of the multi-mesh method, when compared to the single-mesh method, is
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the potential to reduce computational costs in achieving chemical accuracy. This can be explained by a
sample as displayed in Figure 1. The first mesh can be viewed as the mesh for solving the Kohn–Sham
equation, with a dense grid distribution near the singularity and a sparse distribution for regions far from
it. The middle mesh is used to solve the Hartree potential, and due to its smooth behavior and low decay
speed, the mesh grid distribution remains uniform. Finally, the last mesh, formed without employing the
multi-mesh strategy, should be able to capture both the singularity and the low decay of the Hartree
potential. The number of mesh grids for these three meshes is 37, 49, and 57, respectively. Assume
that the linear finite element method is adopted. In the multi-mesh method, a generalized eigenvalue
problem Ax = λBx with A,B ∈ R37×37 and a linear system Sx = b with S ∈ R49×49. While for the
finite element method using one mesh, the eigenvalue problem and the linear system are of the same size
A,B, S ∈ R57×57. Apparently, the computational cost for solving these two problems in the multi-mesh
method is much less than the single-mesh method in this sample.

⊕ >

Figure 1: A sample for multi-mesh method. The left two images show the meshes used in the multi-mesh method. The
right one shows the mesh used in the single-mesh method. The number of the mesh grids for the three meshes are 37, 49,
and 57, respectively.

Nevertheless, the application of the multi-mesh method is accompanied by several challenges. The
first of these challenges is the effective management of mesh grids, requiring the capacity to perform
local grid refinements or coarsening in response to specific problem demands. This management process
must seamlessly facilitate the update of solutions from the previous mesh to the new one. The second
challenge centers on the critical necessity for efficient and accurate multi-mesh communication, particularly
when computing integrals. The establishment of smooth communication is indispensable for maintaining
consistency and accuracy across different meshes. To address these challenges, we introduce the hierarchical
geometry tree data structure. This tree-based approach facilitates the natural and efficient manner
in the management of the mesh grids. Furthermore, in order to prevent any loss of accuracy during
communications across various meshes, we adopt a strategy that maximizes the utilization of quadrature
points in numerical integrals, relying solely on interpolation without the need for a projection process.
This approach ensures the preservation of numerical accuracy throughout the communication process.

By employing the multi-mesh approach, we establish a multi-mesh adaptive finite element framework for
the all-electron density functional theory. With the additional treat on the Hartree potential, systematical
convergence of the total energy to chemical accuracy is observed and the computational cost is less
compared with the single-mesh method given the same accuracy. The mesh adaption is based on the
residual-based a posteriori error estimation of the Kohn–Sham equation and the Poisson equation whose
solution is the Hartree potential. The ability to achieve chemical accuracy is verified by a series of
numerical examples of atoms and molecules. By a detailed comparison of computational time between
the single-mesh method and the multi-mesh method, the efficiency of the multi-mesh adaptive method is
justified.

The organization of this paper is listed below. In Section 2, we introduce the Kohn–Sham equation,
the Poisson equation, and the finite element discretizations of these two equations. Then in Section 3, the
single-mesh adaptive finite element framework for Kohn–Sham density function theory is reviewed and
tested on the Helium atom example. Followed by Section 4 in which the multi-mesh adaptive method is
demonstrated and examined also on the Helium example. In Section 5, the efficiency and accuracy of
the presented method are discussed in detail from numerical examples. Finally, this paper ends with the
conclusion in Section 6.
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2. The Kohn–Sham equation and finite element discretization

2.1. Kohn–Sham density functional theory

The Kohn–Sham equation for a p-electron system is read as the following eigenvalue problem Ĥψl(r) = εlψl(r), l = 1, 2, . . . , p,∫
R3

ψlψl′ dr = δll′ , l, l′ = 1, 2, . . . , p,
(2)

where (εl, ψl) is the l-th eigenpair, δll′ is the Kronecker delta, and Ĥ stands for the Hamiltonian operator.
We denote ρ(r) =

∑p
l=1 |ψl|2(r) as the electron density. Specifically, Ĥ consists of the following four

terms

Ĥ([ρ]; r) = −1

2
∇2

r + Vext(r) + VHar([ρ]; r) + Vxc([ρ]; r), (3)

where the notation V ([ρ]; r) implies that V is a functional of the electron density ρ. The first term −∇2/2
in Ĥ is the kinetic operator. The second term in Ĥ describes the Coulomb external potential due to the
nuclei which takes the form

Vext(r) = −
M∑
j=1

Zj

|r−Rj |
,

where M is the number of nuclei. The third term is the Hartree potential describing the Coulomb
repulsion among the electrons

VHar([ρ]; r) =

∫
R3

ρ(r′)

|r− r′| dr′. (4)

The last term Vxc stands for the exchange-correlation potential, which is caused by the Pauli exclusion
principle and other non-classical Coulomb interactions. Note that the analytical expression for the
exchange-correlation term is unknown and therefore an approximation is needed. Specifically, the local
density approximation (LDA) from the library Libxc [16] with the slater exchange potential and the
Vosko-Wilk-Nusair (VWN4) [26] is adopted in this work.

Note that direct evaluation of the Hartree potential (4) requires computational cost O(N2) with N
being the number of grid points on the computational domain Ω. For simplicity, we denote φ = VHar(r)
hereafter. In this paper, the Hartree potential is obtained by solving the Poisson equation{

−∇2φ(r) = 4πρ(r), in Ω,

φ(r) = φ∂Ω(r), on ∂Ω.
(5)

The boundary value φ∂Ω(r) is evaluated by the multipole expansion method. Specifically, the following
approximation is used

φ(r)|r∈∂Ω ≈
1

|r− r′′|

∫
Ω

ρ (r′) dr′ +
∑

i=1,2,3

pi ·
ri − r′′,i
|r− r′′|3

+
∑

i,j=1,2,3

qij ·
3
(
ri − r′′,i

) (
rj − r′′,j

)
− δij |r− r′′|2

|r− r′′|5
,

where

pi =

∫
Ω

ρ (r′)
(
r′,i − r′′,i

)
dr′, qij =

∫
Ω

1

2
ρ (r′)

(
r′,i − r′′,i

) (
r′,j − r′′,j

)
dr′.

In the above expressions, r′′ stands for an arbitrary point in Ω. In the simulations, we choose it to be

r′′ =

∫
rρ(r) dr∫
ρ(r) dr

.
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2.2. Finite element discretization

In practical simulations, a bounded polyhedral domain Ω ⊂ R3 is served as the computational domain.
Assume that the finite element space Vh is constructed on Ω and the finite element basis of Vh is denoted
as {ϕ1, . . . , ϕn} with n being the dimension of the space. Then the wavefunction ψi can be approximated
as ψh

i on Vh via

ψh
i (r) =

n∑
k=1

Xk,iϕk, Xk,i = ψi (rk) , X ∈ Rn×p, (6)

where rk denotes the node corresponding to the i-th basis function. As a result, to find the approximation
of the wavefunctions {ψi} on Vh is to find X, i.e., the value of ψi at each node rk.

In the finite element space Vh, the variation form for the KS equation (2) becomes: find (ψh
i , ε

h
i )i=1,...,p ∈

Vh × R, such that∫
Ω

ϕĤψh
i dr = εhi

∫
Ω

ϕψh
i dr, ∀ϕ ∈ Vh.

By letting ϕ be the finite element basis function and inserting (6) to the above variational form, we have
the following discrete eigenvalue problem

AX = εMY. (7)

Here A and M are symmetric matrices with the entries

Ai,j =

∫
Ω

1

2
∇ϕj · ∇ϕi +

(
Vext + φ+ Vxc

)
ϕjϕi dr, (8)

Mi,j =

∫
Ω

ϕjϕi dr. (9)

Similarly, we can obtain the linear system for the Poisson equation (5) on Vh:

SΦ = b, (10)

where S is the stiff matrix with the entry

Si,j =

∫
Ω

1

2
∇ϕj · ∇ϕi dr, (11)

and the right hand side b and the discretized φh

bi =

∫
Ω

4πρ(r)ϕi dr, φh(r) =

n∑
k=1

Φkϕk, Φ ∈ Rn.

Owing to the singularity in the Hamiltonian (3), a uniform finite element discretization would lead to
a large number of mesh grids to achieve chemical accuracy. Hence the adaptive mesh method is necessary
to efficiently solve the Kohn–Sham equation, which will be discussed in the next section.

3. The adaptive finite element method

In this section, we will begin by introducing the adaptive finite element method that relies on the a
posteriori error estimates [25]. Subsequently, we will present and compare two error indicators used to
facilitate mesh adaptation for solving the Kohn–Sham equation (2). The sole distinction between these
two error estimators is their utilization of the error involved in solving the Hartree potential.
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3.1. The adaptive method based on the residual a posteriori error estimation

The adaptive mesh techniques offer enhanced numerical accuracy while requiring fewer mesh grids
compared to uniform mesh methods. In this study, our primary focus lies on the h-adaptive methods,
which involve local refinement and/or coarsening of mesh grids. An important aspect of h-adaptive
methods is the determination of an error indicator. Generally speaking, error indicators identify regions
within the domain that necessitate local refinement or coarsening, and they are typically derived from a
posteriori error estimations [25]. When there is only one orbital in the system, it is natural to generate the
indicator based on information from that specific orbital. However, when there are multiple orbitals in the
system, generating the indicator solely from an individual orbital is no longer advisable. This is because
every orbital in the system is expected to be well-resolved using the mesh grids after mesh adaptation.
To address this, we adopt the strategy proposed in [2] for indicator generation. First, indicators are
individually generated for each orbital using a specific method. Then, normalization is applied to each
indicator. The final indicator is obtained by combining these normalized indicators.

Specifically, based on the a posteriori error estimates [25], the residual-based a posterirori error
indicator for the KS equation (2) in the element TK can be defined as

ηK,KS =

(
h2
K

p∑
l=1

∥∥RK,KS(ψl)
∥∥2

K
+
∑

e⊂∂TK

1

2
he

p∑
l=1

∥∥Je(ψl)
∥∥2

e

) 1
2

, (12)

where hK represents the largest length of the edges of the element TK , he stands for the largest length of
the common face e of TK and TJ , RK,KS(ψ) and Je(ψ) are the residual and jump term on the element
TK , whose formulations are written as{

RK,KS(ψl) = Ĥψl − εlMψl,

Je(ψl) = (∇ψl

∣∣
TK
−∇ψl

∣∣
TJ

) · ne,

where ne is the out normal vector on the face e w.r.t the element TK . The definition of the norms are

‖f(x)‖K =

(∫
K

(f(x))2dx

) 1
2

, ‖f(x)‖e =

(∫
e

(f(x))2dx

) 1
2

.

The indicator (12) involves the error arising from the Kohn–Sham equation (2) and is usually directly
adopted to guide the mesh adaption.

An aspect that the indicator (12) may overlook is the error associated with the Hartree potential. It is
important to emphasize the accurate approximation of the Hartree potential, as it is a crucial component
of the Hamiltonian (3) and contributes to the Hartree potential energy. As the Hartree potential is
obtained by solving the Poisson equation (5), a similar approach can be employed to generate an error
indicator specifically for the Hartree potential, just as done for the Kohn–Sham equation. Specifically,
the error indicator for the Hartree potential can be defined as

ηK,Har =

(
h2
K

∥∥RK,Har(φ)
∥∥2

K
+
∑

e⊂∂TK

1

2
he
∥∥Je(φ)

∥∥2

e

) 1
2

, (13)

where the residual part is defined as RK,Har(φ) = ∇2φ+ 4πρ. Based on the analysis above, the second
indicator for solving the Kohn–Sham equation can be designed as

ηK,KS+Har =
√
η2
K,Har + η2

K,KS. (14)

The aim of using this error indicator is to generate a mesh on which both the wavefunctions and the
Hartree potential are approximated well.

The mesh adaptation process, along with the solution of the Kohn–Sham equation, can be carried out
using either the first (12) or the second error indicator (14). It is important to note that the adaptive
algorithms utilizing these two different indicators are essentially identical, except for the choice of the
indicator. Moreover, all simulations are performed on a single mesh simultaneously, i.e., the Poisson
equation (5) for the Hartree potential is discretized and solved on the same finite element space for
the Kohn–Sham equation. Consequently, we present the adaptive finite element method for solving the
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Kohn–Sham equation, outlined in Algorithm 1, and refer to this approach as the single-mesh adaptive
method. Briefly, the adaptive algorithm consists of an outer iteration and an inner iteration. In the inner
iteration, it is an SCF method for solving the nonlinear Kohn–Sham equation. Meanwhile, it is the mesh
adaption procedure in the outer iteration. In the next subsection, we would like to show an example
using the single mesh adaptive method with the first indicator (12).

Algorithm 1: Single-mesh adaptive method.

Input: Initial mesh T (0), initial electron density ρ, initial energy E = 0, energy tolerance tol1,
density tolerance tol2.

while |E − Eold| < tol1 do
Eold = E;
while ‖ρ− ρold‖ < tol2 do

ρold = ρ;
Calculate the Hartree potential φ;
Generate the Hamiltonian matrix A;
Solve the the eigenvalue problem AX = εMX;
Update the electron density ρ;

Calculate the ground state energy E;
Mesh adaption based on the error indicator.

Output: Total ground state energy E

3.2. An issue for numerical solutions towards chemical accuracy

3.2.1. Single-mesh adaptive method using indicator (12)

To assess the convergence and behavior of the single mesh adaptive finite element method with the
error indicator (12), we conduct a series of eight experiments for the helium atom, each involving a
different number of mesh grids, controlled by varying adaption tolerance values. In this example, the
referenced value is obtained from the state-of-art software NWChem using the aug-cc-pv6z basis set [24].
The hardware and software configurations of the experiment are introduced in the beginning of Section 5.

The results are displayed in the Figure 2. As the tolerance for error indicator decreases, the number
of degrees of freedom increases. The convergence of the total energy would serve as evidence of the
superiority of the adaptive method compared to the method employing a uniform mesh partition. However,
it is evident that the total energy does not converge to the reference result observed from the left of
Figure 2. Even in the mesh generated from the smallest tolerance, which consists of 1,737,569 mesh grids,
a discrepancy of 0.01 Hartree in the energy is still observed, indicating that the adaptive method does
not achieve the desired convergence.

-2.85

-2.84

-2.83

-2.82

104 105 106

Number of Dofs

total energy
Eref = -2.8348

10−3

10−2

10−1

104 105 106

Number of Dofs

Error of energies and eigenvalue

Total energy
Hartree energy

ε1
one-electron energy

XC energy

Figure 2: Convergence history of the total enegy (left), absolute errors of energies and eigenvalue (right) for the adaptive
method using error indicator (12).

As discussed earlier, the error in the total energy primarily stems from the inaccurate approximation
of the Hartree energy. This is confirmed by comparing the Hartree energy with the reference value
EHar,ref = 1.9961 Hartree, as depicted on the right side of Figure 2. It is observed that although the error
in the Hartree energy diminishes with respect to the number of Dofs, on the finest mesh, the Hartree
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energy is found to be 0.01 Hartree lower than the reference value, resulting in a 0.01 Hartree error in the
total energy. Furthermore, an imprecise approximation of the Hartree potential can also introduce a 0.01
Hartree error in the eigenvalue, as depicted on the right side of Figure 2. As a comparison, it can be
observed that the errors in the one-electron energy and the exchange-correlation energy systematically
decrease as the number of Dofs increases.

The reason behind the inaccurate approximation of the Hartree potential can be elucidated by referring
to Figure 3 (upper row), which displays the results obtained from the finest mesh consisting of 1,765,990
mesh grids. In the left two columns, the global and local mesh distributions are depicted. It is evident
that the mesh grid density is considerably high around the singularity located at the origin, with the
smallest mesh size being approximately 0.001 Bohr. Conversely, in regions distant from the singularity,
the mesh grid distribution is sparse. Specifically, near the boundary, the largest mesh size can exceed 2
Bohr. Such a mesh distribution proves to be suitable for representing wavefunctions and electron density,
as illustrated in the third column of Figure 3 (upper row), since both quantities exhibit exponential decay,
and the region where the density exceeds 0.1 is confined to a small interval of [−1, 1]3 for the helium atom.
However, in the fourth column of Figure 3 (upper row), it is apparent that the Hartree potential exhibits
a much slower decay behavior, with potential values surpassing 0.1 throughout the entire computational
domain of [−10, 10]3. Furthermore, the contours near the boundary oscillate and are not smooth. As a
result, a mesh size as large as 2 Bohr is evidently insufficient for capturing the variations in the Hartree
potential accurately. In order to enhance the numerical accuracy of the Kohn–Sham equation, it is
essential to obtain a more precise approximation of the Hartree potential.

Figure 3: Top row: results from a single mesh adaptive method using the indicator (12), with total 1,765,990 mesh grids,
i.e., Global mesh and zoomed-in mesh on the sliced X-Y plane (left two), density profile (third one), and Hartree potential
profile (fourth one). Bottom row: corresponding results using the indicator (14), with total 2,847,807 mesh grids.

3.2.2. Single mesh adaptive method using indicator (14)

To achieve a more accurate Hartree potential, a direct approach is to incorporate the corresponding
error indicator (13) with the indicator of the Kohn–Sham equation (12). This combination results in the
second indicator (14). Consequently, we apply the single mesh adaptive method again to the Helium
example, but this time utilizing the second indicator (14).

The convergence of energies and eigenvalues is depicted in Figure 4. Notably, there is a systematic
convergence observed in both the total energy and the Hartree potential energy. Moreover, the eigenvalue
demonstrates convergence towards the reference value. On the finest mesh, which consists of 2,874,807
grid points, chemical accuracy is achieved. Sliced mesh representations and profiles of the electron density
and Hartree potential are shown in Figure 3 (lower row). A noticeable difference from the mesh in
Figure 3 (upper row) is the presence of smaller mesh sizes in regions far away from the origin. As a result,
the Hartree potential is better captured, as illustrated in the fourth column of Figure 3 (lower row), from
which we can find smoother contour lines than that in Figure 3 (upper row) using the first indicator (12).
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Figure 4: Convergence history of the total energy (left), absolute errors of energies and eigenvalue (right) for the adaptive
method using error indicator (14).

While the Hartree potential is approximated accurately and chemical accuracy is obtained, the
computational cost increases significantly. The number of mesh grids on the finest mesh reaches 2,874,807,
surpassing the number of grids used in the previous section. This increment in the number of mesh grids
is primarily caused by the need to capture the variations of the Hartree potential. Such an increase in
the computational grid introduces additional complexity and computational overhead, leading to longer
computation time and higher memory requirements. This becomes especially problematic when dealing
with larger system sizes or when conducting complex simulations. To address this issue and reduce
the computational cost, an alternative approach, known as the multi-mesh adaptive method, will be
introduced in the next section.

4. The multi-mesh adaptive method

In the preceding section, we explored the solution of the discretized Kohn–Sham equation on a single
mesh, employing either the residual-based a posteriori error indicator (12) or (14). The results indicated
that employing the first indicator (12) alone may fall short of achieving chemical accuracy. On the other
hand, the second indicator (14) demonstrated the ability to attain chemical accuracy; however, it came
at the cost of significantly increased computational requirements.

To tackle this challenge, we introduce an approach known as the multi-mesh adaptive method [14].
The primary objective of this method is to strike a balance between achieving chemical accuracy and
managing computational costs effectively. By utilizing multiple meshes instead of a single mesh, the
multi-mesh adaptive method offers greater flexibility in adapting the mesh resolution to capture variations
for different quantities of interest.

Specifically, in this method, we will utilize two distinct meshes. Both two meshes will be adapted
during the simulation. The first mesh is specifically designed for solving the Kohn–Sham equation, with
the primary objective of accurately capturing the variations in the wavefunctions. This mesh is tailored
to ensure high resolution in regions where the wavefunctions exhibit significant changes. Conversely,
the second mesh is dedicated to solving the Poisson equation (5). Its primary purpose is to capture
the variations in the Hartree potential effectively. This second mesh is strategically designed to provide
optimal resolution and precision in regions where the Hartree potential exhibits substantial changes. By
employing two separate meshes with specific focus areas, we can ensure that each equation is solved with
the appropriate level of accuracy and capture the variations unique to the wavefunctions and the Hartree
potential, respectively.

To implement the multi-mesh method, careful handling of two components is crucial. The first
component involves effectively managing the mesh grids, allowing for flexible local refinement or coarsening
as needed. This management mechanism should also facilitate efficient solution updates from the old
mesh to the new mesh. The second component focuses on ensuring efficient and accurate communication
between different meshes, particularly in the calculation of integrals. Efficient communication protocols
play a vital role in maintaining consistency and accuracy across the various meshes. These requirements
can be fulfilled by the hierarchical geometry tree data structure, which will be introduced in detail in the
following.
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4.1. The hierarchical geometry tree

A well-designed data structure for the mesh grids is needed for an effective management mechanism.
In the presented algorithm, the hierarchical geometry tree (HGT) [14, 2] is utilized.

Firstly, the mesh structure is described hierarchically, which means that the mesh information is given
from the lowest dimension (0-D, the points) to the highest dimension (3-D, the tetrahedron) hierarchically.
An element such as a point for 0-D, an edge for 1-D, a triangle for 2-D, a tetrahedron for 3-D is called a
geometry. In the hierarchical description of a tetrahedron, all geometries have a belonging-to relationship.
For example, if an edge is one of the edges of a triangle, this edge belongs to this triangle. With this
hierarchical structure, the geometry information of a tetrahedron can be referred to flexibly, and the
refinement and coarsening of a mesh can also be implemented efficiently.

Secondly, the mesh is stored and managed by a tree data structure. The validity of using the tree
data structure is due to the strategy of element refinement and coarsening. Specifically, for a tetrahedron
element (the left of Figure 5), the refinement of this tetrahedron is dividing it into eight equally small
tetrahedrons via connecting the midpoints on each edge (the right of Figure 5). As a result, a belonging-to
relationship can be established, for example, any small tetrahedron that is called “child” belongs to the
large “parent” tetrahedron. Meanwhile, the coarsening of any child tetrahedron in the right of Figure 5 is
releasing all the children to obtain the parent tetrahedron. By this refinement and coarsening strategy,
the tree data structure is able to be established.

Figure 5: The parent tetrahedron (left) and the eight child tetrahedrons (right).

For a better understanding of the tree data structure, a two-dimensional illustration is presented.
Similar to the 3D case, the refinement of a 2D element, i.e. the triangle, is to divide the triangle
into four equal triangles, as displayed in the left two columns in Figure 6. By refining a triangle T0,
four sub-triangles {T0,0, T0,1, T0,2, T0,3} are generated. Furthermore, via refining T0,0 the sub-triangles
{T0,0,0, T0,0,1, T0,0,2, T0,0,3} are obtained, which is demonstrated in Figure 6. To manage this procedure.
the quadtree data structure in which each internal node has exactly four children is utilized, as described
in Figure 7. When the local refinement and coarsening techniques are adopted, only some triangles are to
refined, as indicated in the right of Figure 6 and the bottom of Figure 7 where only the triangle T0,0 is
refined. In the quadtree, we call T0 the root node, and those nodes without further descents like T0,1 and
T0,0,1 the leaf nodes. Suppose that there is a set of root nodes {Ti}, i = 0, 1, 2, . . . , which form a mesh
for a domain Ω, then from the above definition we know that a set of all leaf nodes also form a mesh.
For example, the set {T0} forms the mesh in the left of Figure 6, the set {T0,0, T0,1, T0,2, T0,3} forms the
middle mesh in Figure 6, and the set {T0,0,0, T0,0,1, T0,0,2, T0,0,3, T0,1, T0,2, T0,3} forms the right mesh in
Figure 6.

With the hierarchical description of the geometry and the tree data structure, the mesh is effectively
managed by the HGT. However, building the finite element space directly on a mesh results in non-
conforming finite element because of the hanging points in the direct neighbors of those refined triangles.
These hanging points can be handled mainly in two ways. If there are more than one hanging point
on a triangle, this triangle will be refined. This process is called the semi-regularization procedure [14].
If there exists only one hanging point on a triangle, for example, the triangle 4DEF in the right of
Figure 6 has a hanging point I arose in the refinement of T0,0. To deal with these kind of hanging points,
the twin-triangle geometry is introduced, which is demonstrated in Figure 8. The twin-triangle actually
consists of two triangles 4FDI and 4FIE. Meanwhile, the degrees of freedom and the interpolation
information of the twin-triangle 4DEF inherit from the two triangles 4FDI and 4FIE. To make the
finite element space conforming, the following strategy is adopted to construct the basis functions in the
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Figure 6: The refinement of a triangle T0 and its sub-triangle T0,0.

T0

T0,0

T0,0,0 T0,0,1 T0,0,2 T0,0,3

T0,1 T0,2 T0,3

Figure 7: The quadtree data structure for the mesh in the right of Figure 6.

twin-triangle geometry: For each basis function, its value is 1 at its corresponding interpolation point
and 0 at other interpolation points. The support of the basis function whose interpolation point is a
common point of two sub-triangles in a twin-triangle geometry such as F and I in Figure 8, is the whole
twin-triangle geometry. For the non-common points like D, the support of its basis function is only the
triangle 4FDI. With such a strategy, a conforming finite element space can be built in a mesh where
the local refinement is implemented.

D EI

F

Figure 8: Twin-triangle.

In virtue of the tree data structure, multiple meshes are allowed to be described by the same HGT.
Naturally, a problem arises: is it possible to make the information communicates among these meshes
without any loss? The answer is affirmative, and the reason relies on the belonging-to relationship between
any two nodes in the HGT. Briefly speaking, there exist only three kinds of relationship between any two
nodes: equal, belonging-to, and no-overlap. The communication among equal or no-overlap elements is
trivial. Consequently, we only need to take care of the second kind of relationship. We introduce the
implementation details in the following.

In the presented method, the Hamiltonian matrix and energy require information from both the KS
mesh and the Hartree mesh, which mainly involve numerical integration. We take the evaluation of the
Hartree potential energy for example, which could be written as

EHar =
1

2

∫
Ω

φ(r)

(
p∑

l=1

ψl(r)2

)
dr. (15)

The integration should be carefully treated since the Hartree potential φ(r) and the wavefunction ψl(r)
belong to different finite element spaces built on different meshes. An intuitive illustration is given to
show how the presented method calculates the integral (15). Assume the finite element space VTKS for
the wavefunction is built on the mesh TKS, and the space VTHar

is built on the mesh VTHar
, see Figure 9.
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For the common elements such as 4CDF which belongs to both TKS and THar, the numerical integration
can be calculated directly. While for the remained elements, for example, in TKS, the triangle 4DAE is
refined, while in THar this triangle is kept, and a similar case for the triangle 4FEB, special treatment is
needed to avoid the loss of accuracy.

A B

C

D

E

F

I

H

G

A B

C

D

E

F

J

K

L

Figure 9: Left: TKS. Right: THar.

In order to prevent the loss of accuracy, we employ a strategy that maximizes the utilization of
quadrature points in numerical integrals. Specifically, the numerical integration on the element 4ADE is
divided into the integrations on its four refined sub-triangles,

1

2

∫
4ADE

φ(r)

(
p∑

l=1

ψl(f)2

)
dr ≈

4∑
K=1

q∑
j=1

area(K)JK
j w

K
j φ(rKj )

(
p∑

l=1

ψl(r
K
j )2

)
,

where the element K represent the four sub-triangles of 4ADE, rKj is the j-th quadrature point of K,

JK
j is the jacobian at rKj , and wK

l is the associated weight in the numerical quadrature. The values of
the Hartree potential on these quadrature points can be obtained by numerical interpolation. Similarly,
the integral on the triangle 4FEB is evaluated by doing the numerical integral on its sub-triangles. In
this way, the accuracy of the integral will not be affected in the communication of different meshes.

With the HGT, the solution update from the old mesh to the new mesh after the local refinement
and coarsening can also be implemented efficiently. As we mentioned before, a set of all leaf nodes forms
a mesh. Although different meshes correspond to different sets of leaf nodes, all meshes are from the
same set of root nodes. Then the belonging-to relationship of the geometries between two meshes can
be analyzed easily. As a result, the solution update can be implemented efficiently according to the
relationship.

4.2. The multi-mesh adaptive algorithm

In virtue of the HGT data structure, the multi-mesh method can be efficiently implemented. To solve
the Kohn–Sham equation, we propose the multi-mesh adaptive algorithm illustrated in the flowchart
presented in Figure 10. The Kohn–Sham equation (2) is discretized and solved on the finite element
space built on the mesh TKS, and the Hartree potential (5) is solved on the mesh THar. The KS mesh
TKS is adapted using the error indicator (12) and the Har mesh THar is adapted using the error indicator
(13). Both of these two mesh adaptions occur after the end of the SCF iteration. The mesh adaptations
continue until the final total energy reaches convergence, at which point the mesh adaptation ceases, and
the results are outputted.

In order to assess the efficiency and make a comparison between the multi-mesh algorithm Figure 10
and the single mesh algorithm Algorithm 1, we categorize the calculations into three distinct types.
Namely, the calculations on the Kohn–Sham mesh TKS with a white background in Figure 10, the
calculations conducted in the Hartree mesh THar with a blue background, and the calculations that require
information from both TKS andTHar with a red background. When comparing the multi-mesh algorithm
to the single mesh algorithm, it becomes evident that additional calculations fall into the third category.
These calculations necessitate communication between the Kohn–Sham mesh and the Hartree mesh.
Specifically, such communication is required during the generation of the Hamiltonian, the updating of the
electron density (which forms the right-hand side of the Poisson equation (5) for the Hartree potential),
and the computation of the total energy. We will conduct a detailed comparison of the time consumed by
these individual parts to evaluate the overall performance of the algorithms in the next section.
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Figure 10: Flowchart of the multi-mesh adaptive algorithm for the KS equation.

By employing the multi-mesh method and incorporating adaptive algorithms guided by appropriate
error indicators, we can achieve accurate and efficient solutions for the Kohn–Sham equation. The
flexibility of mesh adaptation ensures that the mesh resolution aligns with the specific requirements of
each equation, ultimately leading to improved convergence and reliable results. This can be verified by
the Helium example.

5. Numerical Experiments

In this section, we examine the convergence and efficiency of the multi-mesh adaptive method through
a series of numerical examples. All the simulations are performed on a workstation “Moss” with two
AMD EPYC 7713 64-Core Processors (at 2.0GHz×64, 512M cache) and 900GB of RAM, and the total
number of cores is 128. The software is the C++ library AFEABIC [2] under Ubuntu 20.04.

5.1. Case study: for chemical accuracy and computational efficiency

The multi-mesh adaptive method Figure 10 is first tested for three cases: the helium atom, the
LiH molecule, and the BeH2 molecule. Our examination unfolds in three phases: firstly, we assess the
method’s systematic convergence in the context of the helium atom example; next, we determine whether
it can attain chemical accuracy across all three cases; and lastly, we undertake a comparative analysis of
the computational costs required to achieve chemical accuracy between the multi-mesh method and the
single-mesh method.

5.1.1. Helium atom

Similar to the adaptive method using error indicator (14), the systematical convergence of the energies
and eigenvalue are observed in Figure 11, and the chemical accuracy is obtained when the number of
degrees of freedom in TKS achieves 1,262,599, which is far less than that requires in the single-mesh
algorithm. Furthermore, there are 2,185,920 degrees of freedom in the Hartree mesh TKS, which is also
less than the number of mesh grids used to achieve the chemical accuracy using the single mesh adaptive
method.
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Figure 11: Convergence history of the total energy (left), absolute errors of energies, and eigenvalue (right) for the multi-mesh
adaptive method.

Figure 12: Global and zoomed-in meshes on the sliced X-Y plane (top: TKS (1,2262,599 mesh grids); bottom: THar

(2,185,920 mesh grids)), density profile (top right), and Hartree potential profile (bottom right) for the multi-mesh adaptive
method.

The final meshes are displayed in Figure 12. In the top of Figure 12 is the sliced mesh of TKS which is
quite similar with Figure 3 (upper row). The meshes of THar are demonstrated in the bottom of Figure 12,
which has a similar mesh grid distribution as that in Figure 3 (lower row) as shown in a global vision,
while it has a sparser grid distribution comparing with Figure 3 (lower row) since the Hartree potential
behaves less singular than the Kohn–Sham wavefunctions. Although there is a larger number of mesh
grids in THar than in TKS, it should be mentioned that on THar we only need to solve a linear system,
while in TKS, a nonlinear eigenvalue problem should be solved. Consequently, the major computational
cost is from the calculations on TKS, and the increment of the computational cost due to the large number
of mesh grids on THar is slight. As a result, the computational cost of the multi-mesh method is of the
same order of magnitude of the adaptive method, while it can achieve chemical accuracy.

As discussed in previous sections, both the single-mesh and multi-mesh methods are able to achieve
chemical accuracy when the Hartree potential is considered in constructing the error indicator. To
demonstrate the efficiency of the multi-mesh method, we compare the serial time for these two methods
to achieve chemical accuracy. For the sake of fairness, we start the two algorithms from the same mesh
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and initial guess, and the tolerance for guiding the mesh adaption is also the same. With these settings,
it is found that the convergence in SCF is quite similar and the number of mesh adaptions is the same, as
displayed in Figure 13. From the figure, it suggests that the introduction of Hartree mesh will not affect
the convergence of the SCF procedure in KS mesh. Therefore, the comparison of the CPU time is fair
and effective.
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Figure 13: SCF convergence history (left) and mesh adaption history (right) for Helium.

A summary of the comparison is illustrated in Table 1. Both methods achieved chemical accuracy,
and the number of mesh grids in the single-mesh method is the largest among all meshes. The CPU time
is compared with respect to two parts: the SCF part and the mesh adaption part. From Table 1, the
multi-mesh method is proved to be more efficient than the single-mesh method in achieving the chemical
accuracy of the helium atom.

Table 1: Comparison on He with respect to results and serial computational time. tall represents the total CPU time. tSCF

stands for the time for SCF and tMA represents the time for mesh adaption.

Etot ∆E NKS NHar tall tSCF tMA

single-mesh -2.8341 0.0007 2,874,807 2,874,807 10290.45 7585.62 2704.83

multi-mesh -2.8340 0.0008 1,262,599 2,185,920 7063.97 5135.69 1928.28

A more detailed comparison is presented in Figure 14. The method can be divided into six parts as
indicated in Figure 14. The four images represent CPU time on four meshes during the mesh adaption
process. Obviously, the cost for solving the Hartree potential and the eigenvalue value problem is less in
the multi-mesh method, as expected. Furthermore, the cost of constructing a matrix in the multi-mesh
method is also less than that in the single-mesh method on the finest mesh. It is noted that this part
contributes the largest portion of the total cost since in the helium example the eigensolver only needs to
solve one eigenpair. In larger systems, solving the eigenvalue problem will be the most time-consuming
part.
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Figure 14: CPU time for single-mesh method and multi-mesh method on six parts: MA (mesh adaption), SH (solve Hartree
potential), CM (construct matrix), SE (solve eigenvalue problem), UD (update electron density) and CE (calculate energy).
Four mesh adaptations are needed to achieve chemical accuracy in both methods starting from the same initial setup.

5.1.2. LiH molecule

A similar comparison for the LiH molecule is employed. The referenced total energy is Eref = −7.9195
Hartree. The results are displayed in Table 2, revealing the attainment of chemical accuracy. From this
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table, the multi-mesh approach demonstrates its efficiency compared to the single-mesh method.

Table 2: Comparison on LiH with respect to results and serial computational time. The referenced total energy is
Eref = −7.9195 Hartree.

Etot ∆E/2 NKS NHar tall tSCF tMA

single-mesh -7.9178 0.0008 6,029,109 6,029,109 18613.60 13279.79 5333.82

multi-mesh -7.9181 0.0007 3,786,064 3,665,015 14025.13 10245.13 4262.25

The detailed comparison regarding CPU time is illustrated in Figure 15. As expected, in the LiH
example, the solution of the eigenvalue problem significantly contributes to the CPU time due to the
increased number of required eigenvalues. Notably, the cost of the third mesh is higher than that of the
final mesh. This is because, during the third mesh adaptation step, the mesh tends to stabilize with
minimal changes, leading to fewer iteration steps in the final mesh, as shown in Figure 13. Consequently,
the CPU time on the third mesh becomes the most significant part contributing to the total CPU time.
Moreover, since the number of Dofs in the multi-mesh method is smaller than that in the single-mesh
method, the SCF time for the multi-mesh approach is also reduced. Overall, the multi-mesh method
proves to be more efficient in terms of computational time than the single-mesh method in this case.
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Figure 15: CPU time for single-mesh method and multi-mesh method for LiH molecule. Four mesh adaptations are needed
to achieve chemical accuracy in both methods starting from the same initial setup.

5.1.3. BeH2 molecule

The comparison between the multi-mesh method and the single-mesh method is also presented in the
BeH2 example, as displayed in Table 3 and Figure 16. A similar conclusion to the previous examples on
the accuracy and efficiency can be delivered from the results. In this case, given the same mesh adaption
tolerance, the multi-mesh method succeeds in achieving the chemical accuracy, while the single-mesh
method fails. This observation illustrates the superior accuracy through the multi-mesh method compared
to the single-mesh method.

Table 3: Comparison on BeH2 with respect to results and serial computational time. The referenced value is Eref = −15.6606
Hartree.

Etot ∆E/3 NKS NHar tall tSCF tMA

single-mesh -15.6573 0.0011 7,338,638 7,338,638 42445.26 32331.87 10113.40

multi-mesh -15.6580 0.0009 4,852,528 4,276,863 32133.92 23925.93 8207.99
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Figure 16: CPU time for single-mesh method and multi-mesh method for BeH2 molecule. Four mesh adaptations are needed
to achieve chemical accuracy in both methods starting from a same initial setup.
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5.2. Collection of results for more general electronic structures

In this subsection, we list the results of atoms and molecules using multi-mesh adaptive methods. The
referenced values are generated from the state-of-art software NWChem using aug-cc-pv5z basis sets except
for the helium atom in which the aug-cc-pv6z basis set is adopted. According to Table 4, we observe that
chemical accuracy is achieved in the first four examples. However, as the number of atoms increases, the
accuracy diminishes. This degradation can be attributed to the limitations of computational resources.
In such scenarios, we try to fully utilize our computational resources for simulations using both the
single-mesh and multi-mesh adaptive methods, which can be implemented by dynamically adjusting the
mesh adaption tolerance. Hence a comparative assessment between the two approaches can be delivered.

Table 4: List of examples. The referenced value is obtained from NWChem. Ns,KS represents the number of mesh grids for
the single mesh method. Es,KS stands for the energy obtained from the single-mesh method. The last row refers to the
comparison with chemical accuracy.

molecule He LiH BeH2 CH4 CH3OH CH3CH2OH C6H6

Ns,KS 2,874,807 6,029,109 7,338,638 8,121,252 7,552,976 7,720,132 7,210,851
NKS 1,262,599 3,786,064 4,852,528 5,440,384 6,226,903 6,864,714 6,036,918
NHar 2,185,920 3,665,015 4,276,863 5,322,827 4,063,275 3,593,622 4,798,747

Eref -2.8348 -7.9196 -15.6606 -40.1198 -114.8503 -153.8158 -230.1916
Es,KS -2.8341 -7.9178 -15.6573 -40.1105 -114.8033 -153.7418 -229.9824
EKS -2.8340 -7.9181 -15.6580 -40.1147 -114.8205 -153.7734 -230.0663

|∆Es,KS/Eref | 0.0002 0.0002 0.0002 0.0002 0.0004 0.0005 0.0009
|∆EKS/Eref | 0.0003 0.0002 0.0002 0.0001 0.0003 0.0003 0.0005
|∆Es,KS/natom| 0.0007 0.0009 0.0011 0.0019 0.0078 0.0082 0.0174
|∆EKS/natom| 0.0008 0.0008 0.0009 0.0010 0.0050 0.0047 0.0104

Figure 17: Sliced KS meshes (top) and isosurfaces (bottom) for the following molecules: LiH, BeH2, CH4, CH3OH, and
CH3CH2OH. Contours are depicted for the two-dimensional structures (LiH and BeH2). The computational domain is set
as [−10, 10]3, with the exception of the CH4 example, for which it is extended to [−20, 20]3.

The results are summarized in Table 4 and we display several meshes and isosurfaces for these examples
in Figure 17. From the table and the figure, we can see that

• For the last four molecules, besides a similar observation for the CPU time in Figures 14, 15, and
16, another observation can be made, that with comparable computational resource, our multi-mesh
method can generally produce a much better result. It means that the multi-mesh method would
be an answer to the question of how to generate the most accurate result, by fully using the given
computational resource.

• When maximizing our computational resources, the multi-mesh approach yields more precise results.
To be specific, the multi-mesh method attains chemical accuracy for the first four examples, as
indicated in the last row of Table 4. In contrast, the single-mesh method only achieves chemical
accuracy in the first two examples.
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• In the multi-mesh method, the number of mesh grids for the Hartree mesh exceeds the number
for the KS mesh only in the case of helium. As the system size scales up, the number of Hartree
mesh grids becomes progressively less than the number of KS mesh grids. Consequently, the
computational time needed for the Hartree potential becomes less significant as the system size
increases. There is an exception in the cases of CH4 and C6H6, which arises because we opted for a
larger computational domain, specifically, [−20, 20]3.

6. Conclusion

In this paper, we introduce a multi-mesh adaptive finite element framework for Kohn-Sham density
functional theory, aiming to achieve chemical accuracy. We investigate the impact of the Hartree
potential approximation on total energy, finding that chemical accuracy cannot be attained without a
well-approximated Hartree potential. While the single-mesh adaptive method, considering the Hartree
potential, achieves chemical accuracy, it comes with significant computational costs. To address this,
we propose the multi-mesh adaptive method, which offers a more efficient route to achieving chemical
accuracy.

We demonstrate the effectiveness and accuracy of the multi-mesh adaptive method through various
numerical examples. However, we observe that even for the helium atom, achieving chemical accuracy
demands a substantial number of mesh grids, mainly due to the use of linear Lagrange finite elements.
One strategy is to adopt higher-order elements under the multi-mesh framework. Additionally, we
consider future work on conducting numerical analysis for the multi-mesh adaptive method. Moreover,
we recognize the need for accelerating the multi-mesh adaptive approach, particularly through parallel
implementation and the development of more effective error indicators for mesh adaptation methods.
These enhancements will further refine the efficiency and accuracy of the multi-mesh adaptive framework.
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[22] Pavel Soĺın, J Cerveny, Lenka Dubcova, and David Andrs. Monolithic discretization of linear thermoelasticity problems

via adaptive multimesh hp-FEM. Journal of Computational and Applied Mathematics, 234(7):2350–2357, 2010.
[23] Eiji Tsuchida and Masaru Tsukada. Electronic-structure calculations based on the finite-element method. Physical

Review B, 52(8):5573, 1995.
[24] Marat Valiev, Eric J Bylaska, et al. NWChem: A comprehensive and scalable open-source solution for large scale

molecular simulations. Computer Physics Communications, 181(9):1477–1489, 2010.
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