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Abstract. It is found that imaginary time propagation method can effectively deliver
a convergent result in solving Kohn–Sham equation, but a sufficient long simulation
is needed to reach an accurate enough result, while the self-consistent field iteration
method for Kohn–Sham equation can be more efficient when it works, but it some-
times suffers from divergence. In this work, we take advantage of the convergence of
imaginary time propagation method by generating a quality initial guess to improve
the behavior of self-consistent field iteration. A number of numerical experiments suc-
cessfully show that i). for those self-consistent field iterations which are sensitive to the
initial guess, the results obtained from imaginary time propagation method make the
iterations converge, and ii). generally, the convergence of self-consistent field iteration
can be accelerated by imaginary time propagation method. It is shown that all-electron
models can be resolved well with the proposed method.
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1 Introduction

With the development of the hardware, as well as the requirements appeared in modern
physical and chemical experiments, quality numerical simulations for all-electron Kohn–
Sham models in density functional theory have been attracting more and more attention,
please refer to [20, 26, 28, 30, 34] and references therein.

There are two popular approaches for solving Kohn–Sham model, i.e., the imaginary
time propagation (ITP) method [3,6–8,14,27], and the self-consistent field (SCF) iteration
method [4, 5, 20, 26, 32, 33]. The implementation of ITP is quite simple. By introducing an
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imaginary time by Wick rotation, the complex-valued time-dependent Kohn–Sham equa-
tion is transformed to a real-valued time-dependent equation whose solution approaches
asymptotically the ground state of the given system. Based on our numerical experi-
ence [25] which will also be illustrated in the context, it is noted that a sufficiently long
simulation is needed by ITP method to obtain the ground state with an accurate enough
result. As another widely-used method, SCF iteration method introduces a sequence of it-
erations to resolve the nonlinearity of the Kohn-Sham equation. More specifically, in each
iteration, a generalized eigenvalue problem is derived with a given electron density, then
the new electron density is generated by solving this generalized eigenvalue problem.
The ground state of the given system is obtained when the iteration converges. As a brief
comparison, the implementation of ITP method is simple, and the solving of eigenvalue
problem is avoided. Although it may bring nontrivial challenges on solving eigenvalue
problems, the SCF method could be more efficient when it works. Unfortunately, there
are lots of evidence [24, 36, 37] to show the possible failures on the convergence of SCF
iteration. The situation could become worse when all-electron Kohn–Sham models are
considered where the mesh grid around the singularities should be dense enough to re-
solve the singularities. If a uniform mesh is adopted in the simulations, a great amount
of degrees of freedom will be required to obtain an accurate result, which makes the com-
putation less of efficiency. In this work, we follow the theoretical framework by Huang
et al. [17] to derive a general mesh density function for any atomic or molecular system,
and apply the result in generating the radial mesh in the numerical examples.

In solving the Kohn–Sham equation with a random initial guess on a nonuniform
mesh, the following two issues may bring troubles in the convergence of SCF iteration: i)
the condition number of the discretized Hamiltonian is too large, and ii) the initial guess
is quite far away from the solution. On the one hand, the linear system becomes difficult
to solve when the minimum mesh size hmin is small. This is due to the fact that the
condition number of discretized matrix will become larger when hmin goes smaller [15].
On the other hand, the random initial guess could lead to the divergence of the SCF
iteration. Due to the nonlinearity of the Kohn–Sham system, the quality of the initial
guess plays an important role in the convergence of the iterative method. A bad initial
guess which is far away from the convergence region will lead to divergent results, which
can be observed from the numerical examples in this paper.

To improve the convergence of SCF, one could provide a good initial guess to the
SCF iteration. Based on our numerical experience, it is found that ITP can provide an
acceptable result rapidly in just a few steps even starting from a random initial guess.
This motivates us to take the advantage of ITP to obtain a quality initial condition for the
SCF iteration.

In this work, starting from a random initial guess, firstly the ITP method is applied to
propagate the random initial guess for a few steps, and then the ITP solution is served as
the initial guess of the SCF iteration to solve the Kohn–Sham equation. Due to the flexibil-
ity in handling the complex boundary condition and complicated computational domain,
the finite element method is adopted in spatial discretization in this paper. It is noted
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that we do the orthonormalization process after each propagation. We adopt the back-
ward Euler scheme for the temporal discretization for its simplicity and the allowance
for larger time step than the explicit methods. A number of numerical experiments suc-
cessfully show that i). for those self-consistent field iterations which are sensitive to the
initial guess, the results obtained from imaginary time propagation method make the it-
erations converge, and ii). generally, the convergence of self-consistent field iteration can
be accelerated by imaginary time propagation method. In addition, based on the numer-
ical experiments, the CPU time occupied by the ITP part only take no more than 10% of
the whole CPU time. As a conclusion, our proposed method can solve the Kohn–Sham
equation very efficient.

This paper is organized as follows. In Section 2, the Kohn–Sham equation and its
finite element discretized form are introduced, and a radial mesh generating strategy is
presented. In Section 3 we propose a new numerical method based on the imaginary
time propagation technique. Numerical results are reported in Section 4 to verify the
convergence and efficiency of the proposed algorithm. Finally, the conclusion is given in
Section 5.

2 Kohn–Sham equation

We consider a molecular system in R
3 consisting of M nuclei with charges {Z1,··· ,ZM}

located at the positions {R1,··· ,RM}, and Ne electrons in the non-relativistic and spin-
unpolarized setting. Denote the number of occupied orbitals by No. Since electrons are
fermions which implies that at most two electrons occupy the same orbital, then No =
Ne/2 if Ne is even, otherwise No = (Ne+1)/2. Thus the ground state solution of the
system can be obtained by solving the lowest No eigenpairs of the following Kohn–Sham
equation (in atomic units)







Hψk(r)= εkψk(r), k=1,2,··· ,No,
∫

ψkψldr=δkl , k,l=1,2,··· ,No,
(2.1)

where δkl is the Kronecker operator and r = (x,y,z) stands for the spatial coordinates.
Assume {εk} is the set of the eigenvalues of the Hamiltonian operator H corresponding
to the eigenstates {φk} with an increasing order, i.e., ε1 ≤ ···≤ εk ≤ ···. The Hamiltonian
H consists of two parts, the kinetic potential part −∇2/2 and the effective potential part
Ve f f ([n];r) which is given as follows

Ve f f =Vext(r)+VHar([n];r)+Vxc([n];r), (2.2)

where n is the electronic density which can be written as

n(r)=
No

∑
k=1

fk|ψk(r)|
2, (2.3)
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with fk the occupation number of the k-th orbital. The first term of the effective potential
is the external potential which describes the electrostatic potential due to the nuclei which
takes the following form

Vext(r)=−
M

∑
I=1

ZI

|r−RI |
. (2.4)

The second term is the Hartree potential describing the Coulomb repulsion among the
electrons, which can be written as

VHar([n];r)=
∫

n(r′)

|r−r′|
dr′. (2.5)

And the last term Vxc stands for the exchange-correlation potential, which is caused by
the Pauli exclusion principle and other non-classical Coulomb interactions. The analyt-
ical expression for the exchange-correlation term is unknown and therefore approxima-
tions for exchange-correlation term are required. In this paper, the local density approxi-
mation (LDA) from the library Libxc [31] is used in simulations.

Due to the flexibility in handling the complex computational domain and complicated
boundary conditions, the finite element method is applied to discretize the Kohn–Sham
equation in this work. In practical computations, we always use a bounded polyhedral
domain Ω⊂R

3 to be served as the computational domain owing to the exponential de-
cay behavior of the ground state wavefunction of the Schrödinger equation [1]. Thus
the variational form of the Kohn–Sham equation (2.1) on Ω can be formulated as: Find
(εk,ψk)∈R×H1

0(Ω), k=1,2,··· ,No, such that

∫

Ω

(

1

2
∇ψk∇ϕ+Ve f f ψk ϕ

)

dr= εk

∫

Ω
ψk ϕdr, ∀ϕ∈H1

0(Ω), (2.6)

where H1(Ω) is the standard Sobolev space, H1
0(Ω)= {ϕ∈ H1(Ω) : ϕ= 0 on ∂Ω}. Then

the total energy of the system can be formulated as

Etot=
1

2

No

∑
k=1

fk

∫

Ω
|∇ψk|

2dr+
∫

Ω
ǫxc(n(r))dr−

∫

Ω

M

∑
k=1

Zkn(r)

|r−Rk |
dr+

1

2

∫∫

n(r)n(r′)

|r−r′ |
dr′dr, (2.7)

where ǫxc is the exchange-correlation energy per volume. Furthermore, the Hartree po-
tential VHar can be obtained by solving the following Poisson equation

−∇2VHar(r)=4πn(r), (2.8)

with the boundary condition obtained from the multipole expansion method [5].
Assume that the finite element space Vh ⊂H1

0(Ω) is constructed on the bounded do-
main Ω partitioned by T = {TK,K = 1,2,··· ,Nele}, where Nele denotes the total number
of elements of T . In this paper, the linear tetrahedron finite element is used (see Fig. 1).
The basis functions are linear and can be constructed following [9]. They have a property
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Figure 1: The linear tetrahedron finite element TK.

that each basis function takes value 1 at its associated node while 0 at all other nodes.
For examples, in the linear finite element TK in Fig. 1, the basis function ϕ0 associated
with point 0 takes value 1 at points 0, and value 0 at points 1,2,3. We further assume that

{ϕi}
Nbas

i=1 , i= 1,··· ,Nbas are the set of basis functions, {ri}
Nbas

i=1 are the set of nodes in space
Vh, and Nbas denotes the dimension of the Vh. Consequently, for any function ψ(r), it can
be approximated as ψh in space Vh with the form

ψh =
Nbas

∑
i=1

ψh
i ϕi, (2.9)

where ψh
i is equivalent to the value of ψ(r) at the i-th node, i.e, ψ(ri).

In this paper, the scalar product of ψ and φ on domain Ω is denoted by 〈ψ,φ〉Ω and is
evaluated as ∑K〈ψ,φ〉TK

. And in each element TK, the integral is obtained from numerical
quadrature with Gaussian type quadrature points as follows

〈ψ,φ〉TK
=

∫

TK

ψ(r)φ(r)dr≈
Nq

∑
l=1

ωlψ(rl)φ(rl), (2.10)

where Nq is the number of numerical quadrature points, and {rl} are the quadrature
points which are generated following from J. Yu [38]. Precisely, we let Nq =4 and all the
quadrature points locate inside the element with the same weight ωl =0.25.

With the above notations, the discretized variation form of (2.6) becomes: Find (εh
k,ψh

k )∈
R×Vh, k=1,2,··· ,No such that

1

2
〈∇ψh

k , ∇ϕ〉Ω+〈Ve f f ψ
h
k , ϕ〉Ω= εh

k〈ψ
h
k , ϕ〉Ω, ∀ϕ∈Vh, (2.11)

where the term with the superscript h means that this term is related to the finite dimen-
sional space Vh.
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The k-th wavefunction ψk in the finite element space Vh can be approximated by

ψh
k =

Nbas

∑
i=1

ψh
k,i ϕi. (2.12)

To find out ψh
k =(ψh

k,1,··· ,ψh
k,Nbas

)T, we thus need to solve the following generalized eigen-
value problem

Aψh
k = εkBψh

k , (2.13)

where B is positive-definite and A and B are both Hermitian matrices. The entries of A,
B are

Aij=
1

2
〈∇ϕi, ∇ϕj〉Ω+〈Ve f f ϕi, ϕj〉Ω, (2.14)

Bij= 〈ϕi, ϕj〉Ω, (2.15)

respectively. To solve the generalized eigenvalue problem, we use the popular locally
optimal block preconditioned conjugate gradient (LOBPCG) method [21, 22].

On the same finite element space, the Hartree potential VHar can be represented as

Vh
Har =

Nbas

∑
i=1

Vh
Har,iϕi, (2.16)

where {Vh
Har,i} are coefficients. Denoted by V h

Har = (Vh
Har,1,··· ,Vh

Har,Nbas
)T, then the dis-

cretized form for the Poisson equation (2.8) can be expressed as

SV h
Har = f , (2.17)

with a Dirichlet boundary condition following the strategy in the paper [5], in which a
multipole expansion approximation is adopted for the boundary values. Here S is the
stiffness matrix with entry

Sij = 〈∇ϕi, ∇ϕj〉Ω, (2.18)

and f is a vector with entry

fi = 〈4πn, ϕi〉Ω. (2.19)

In this paper, the linear system (2.17) is solved by the algebraic multigrid (AMG) method
[10].

Towards the quality description of external potential in Kohn–Sham equation, we use
a radial mesh which following the mesh generating framework by Huang and Russel
[17]. We aware that there are a lot of works on designing the radial mesh for the all-
electron calculations, please refer to [13, 23, 26, 29, 35] for more details. Applying this
framework in [17], we generate a mesh with mesh size function near the nucleus taking
the form h(r)= r6/5 in practical simulations, where h(r) is defined to be the diameter of
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the element where the spatial point r belongs to. As a result, for the system with external
potential Vext (see Eq. (2.4)) the mesh size function can be designed as follows

h(r)=min
{

βZ
− 2

5
1 r

6
5
1 ,··· ,βZ

− 2
5

M r
6
5
M,γ

}

, (2.20)

with rI = |RI−r|. In practice, the parameters β=0.125 and γ=8 are sufficient for systems
under study, and they will be used in most simulations unless explicitly stated. The
software Gmsh [16] is used to generate the radial meshes. By some certain commands, the
singularities can be forced to node points of the 3D mesh and the mesh will be generated
following the mesh size function (2.20). Details of the implementation can be found in
Appendix A.

With the quality radial mesh, we then can solve the Kohn–Sham equation on the finite
element space built on the mesh.

3 Self-consistent field iteration and imaginary time propagation

It is well known that the Kohn–Sham equation (2.1) is a nonlinear equation since the ef-
fective potential term depends on the wavefunctions. To solve this nonlinear problem,
the most popular way is the self-consistent field iteration which is illustrated in Fig. 2.
Briefly, an initial guess for electron density is required, and the electron density is up-
dated after solving the linearized Kohn–Sham equation in each iteration. The iteration
will be stopped if the difference between the current density and the previous density
is small enough. However, in the practical simulations, SCF sometimes suffers from di-
vergence [24, 36, 37]. In this section, two divergent examples are demonstrated first and
then the ITP-SCF method is presented to stabilize and accelerate the convergence of SCF
iteration. Note that in this paper, we are using a simple mixing scheme

n(s+1)=(1−a)ñ(s+1)+an(s), (3.1)

where n(s) is the density at s-th step, while ñ(s+1) is the density from solving the eigen-
value problem. Here a=0.3 is used in our simulation to generate n(s+1).

3.1 Failure of SCF iteration

Lithium is the lightest metallic element and it has a single s valence electron. Thus it
always serves as the starting point for a theoretical understanding of metal clusters [2,
11, 19]. We study the ground state of Li7 (D5h) [2] with structure as depicted in the left of
Fig. 3. For the ground state calculation of Li7, a random initial guess is provided for the
SCF iteration in solving the all-electron Kohn–Sham equation (2.1). The computational
mesh is generated from the strategy present in the last section. The difference ‖nnew−
nold‖2 between current electron density nnew and previous electron density nold for Li7 is
displayed in the right of Fig. 3. From this figure, we can observe that the difference of
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Figure 2: Flowchart of SCF iteration.

Figure 3: Ground state calculations of Li7. Left: the chemical structure for Li7. Right: density difference versus
SCF iteration numbers for a random initial guess.

density oscillates a lot from the 8-th SCF step and finally there is no convergent result at
least within 60 SCF steps.

This divergent phenomenon is also found in the all-electron calculation of the molecule
azobenzene (C12H10N2) which is certainly one of the most important organic molecules
[18]. The chemical structure of the molecule azobenzene is displayed in the left of Fig. 4
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Figure 4: Ground state calculations of C12H10N2. Left: the chemical structure for C12H10N2, label 1,2,3
represent C,H,N atom, respectively. Right: density difference versus SCF iteration numbers for a random initial
guess.

and the difference between current electron density and previous electron density is dis-
played in the right of Fig. 4. The total energy oscillates much more dramatic than that of
Li7 and behaves divergent within 60 SCF steps.

The quality of the initial guess plays an important role in the convergence of the non-
linear solvers. Therefore, to improve the convergence of SCF, one can provide a good
initial guess to the SCF iteration. Based on our numerical experience, it is found that ITP
can provide an acceptable result rapidly in just a few steps even starting from a random
initial guess. This motivates us to take the advantage of ITP to obtain a quality initial
condition for the SCF iteration. In this way, the convergence of SCF iteration is stabilized
and accelerated.

3.2 Imaginary time propagation

The imaginary time propagation method (ITP) can be used to calculate the ground state
of a quantum system. The basic idea of the ITP method origins from the fact that the set
of eigenstates {φj} of the Hamiltonian H forms a real orthonormal basis on its domain.
To illustrate the ITP method, we consider the ground state of a quantum system which
can be modeled by a stationary Kohn–Sham equation as shown in (2.1). Actually, this
time-independent equation originates from the time-dependent Schrödinger equation

i
∂ψ(r,t)

∂t
=Hψ(r,t), ψ(r,0)=ψ0(r), (3.2)

where ψ(r,t) means that ψ is a function depending on both r and t, and here ψ0(r) is
the initial condition and H is the Hamiltonian. A Wick rotation of the time coordinate,
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t=−iτ, transforms (3.2) into the following type equation:

−
∂ψ(r,τ)

∂τ
=Hψ(r,τ), ψ(r,0)=ψ0(r), (3.3)

with the formal solution ψ(r,τ)=e−τHψ0r. After expanding the initial condition ψ0 in the
basis of eigenstates {φi},

ψ0(r)=∑
i

ciφi(r), ci = 〈φi(r),ψ0(r)〉,

the time evolution of (3.3) is given by

ψ(r,τ)= e−τHψ0(r)=∑
i

e−τEi ciφi(r)= e−τE0 ∑
i

e−τ(Ei−E0)ciφi(r). (3.4)

Asymptotically, if the initial state ψ0 is not orthogonal to the ground state φ0, then after
a sufficiently long time propagation, we get ψ(r,τ)→e−τE0 c0φ0 since the other exponents
decay more rapidly. The wavefunction for the ground state then can be obtained by
normalizing ψ(r,τ). To achieve the excited states, we can propagate several different
initial states simultaneously in time with an orthonormalization process after each step
which can be implemented by the modified Gram–Schmidt method.

Similar with the discretization in Section 2, the time evolution problem (3.3) will be
solved in a bounded polyhedral domain Ω. Then the variational form of the equation
(3.3) on Ω can be illustrated as: Find ψh,k(t) : [0,∞)→H1

0 (Ω), k=1,2,··· ,No, such that

〈dψh,k(t)

dt
, ϕ

〉

=−
〈1

2
∇ψh,k(t), ∇ϕ

〉

−〈Ve f f (t)ψh,k(t), ϕ〉, ∀ϕ∈H1
0(Ω), (3.5)

where 〈ψ,φ〉 is short for 〈ψ,φ〉Ω here and after. With the finite element space Vh⊂H1
0(Ω)

constructing on Ω partitioned by T = {TK,K = 1,2,··· ,Nele}, the semi-discretized varia-
tional form of (3.3) becomes: Find ψh,k(t) : [0,∞)→Vh, k=1,2,··· ,No, such that

〈dψh,k(t)

dt
, ϕ

〉

=−
〈1

2
∇ψh,k(t), ∇ϕ

〉

−〈Ve f f (t)ψh,k(t), ϕ〉, ∀ϕ∈Vh. (3.6)

In this work, the backward Euler method is applied as the time scheme of the time-
dependent equation (3.2) for its simplicity and the allowance for larger time step than
the explicit methods. Then at imaginary time t(m)=mdt, where dt is the time step, the
full-discretized variational form for equation (3.2) after applying backward Euler time

scheme can be formulated as: Find {ψ
(m+1)
k }∈Vh, k= 1,2,··· ,No (for simplicity the sub-

script h is ignored here), such that ∀ϕ∈Vh

〈ψ
(m+1)
k −ψ

(m)
k

dt
,ϕ
〉

=−
〈1

2
∇ψ

(m+1)
k ,∇ϕ

〉

−〈V
(m)
e f f ψ

(m+1)
k ,ϕ〉, (3.7)
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here V
(m)
e f f is evaluated based on {ψ

(m)
k }. Rearranging the above formula and we have

〈ψ
(m+1)
k ,ϕ〉+

dt

2
〈∇ψ

(m+1)
k ,∇ϕ〉+dt〈V

(m)
e f f ψ

(m+1)
k ,ϕ〉= 〈ψ

(m)
k ,ϕ〉, (3.8)

After expanding the wavefunctions by ψ
(m+1)
k =∑

Nbas

i=1 ψ
(m+1)
k,i ϕi and denoting by Ψ

(m+1)
k =

(ψ
(m+1)
k,1 ,··· ,ψ

(m+1)
k,Nbas

), the following linear systems are obtained

CΨ
(m+1)
k =BΨ

(m)
k , k=1,··· ,No, (3.9)

where B is the mass matrix with form (2.15) and the entry of C can be written as

Ci,j=
∫

Ω

{

ϕj ϕi+
dt

2
∇ϕj ·∇ϕi+dtV

(m)
e f f ϕj ϕi

}

dr. (3.10)

All the wavefunctions should be propagated from t(m) to t(m+1), which means the linear
system (3.9) would be solved for N times with different right hand sides. The efficient
algebraic multigrid (AMG) solver is adopted to solve the system (3.9).

Remark 3.1. It is noted that AMG solver is used in two processes in our algorithm, i.e., the
generation of the Hartree potential, and the solving of the linear system in the backward
Euler scheme. Since the radial mesh is generated in advance, and it is fixed during the
whole simulation, the AMG solver is actually initialized at the beginning, and reused
when needed.

A worth noticing phenomenon is that even given a random initial guess for the time
evolution problem (3.2), the total energy will rapidly approach to the exact total ground
state energy in the first several steps, which is observed in all the simulations in this work.
We take the evaluation of total ground state energy of lithium atom for instance. In this
simulation, the computational domain is set as [−20,20]3 and the domain is partitioned
following the strategy proposed in the end of Section 2. By letting β = 0.075,γ = 8, a
computational mesh with 86862 degrees of freedom is obtained. On this mesh, we take
time step as dt=0.4, and the equation is propagated forward until t=50. The convergence
history for the total energy is displayed in the left of Fig. 5. From this figure, we can see
that the total energy decreases to around −7 a.u. within propagation time t= 2, which
means it only take 4 to 5 steps, ITP can obtain a total energy less than 10% relative error.
However, the speed of convergence becomes slow as time propagates which also can
be found in the right of Fig. 5. To achieve accurate enough result using ITP alone, the
equation should be propagated for a very long time.

3.3 ITP-SCF method

It is thus natural to utilize the fast convergence property of the imaginary time propa-
gation method in the first several time propagations to combine with the SCF methods.
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Figure 5: ITP to obtain the ground state of lithium atom. Left: the convergence history for total energy. Right:
the relative error for the total energy versus the propagation time.

Algorithm 1 ITP-SCF method for ground state total energy calculation

Require: The chemical structure for the system, m=1
1: Generating a radial mesh T based on the given chemical structure using strategy

presented in Section 2.
2: Building the finite element space Vh on the initial mesh T and generating a random

initial guess for wavefunctions {ψ
(0)
k ,k=1,··· ,N}.

3: do

4: Propagating the time evolution problem (3.2) for one imaginary time steps
5: Orthonormalizing the wavefunctions.
6: while m++<mitp

7: Evaluating the total ground state energy Etot.
8: do

9: E0
tot=Etot.

10: Updating the Hamiltonian using wavefunctions obtained in previous step.
11: Solving the Kohn–Sham equation (2.1) to obtain the eigenpairs {ψi,ε i} and the

total ground state energy Etot.
12: while |Etot−E0

tot|> tol
13: Output the total energy Etot.

Precisely, starting with the random initial guess, we can first use ITP method to propa-
gate the equivalent time evolution problem within few imaginary time steps. Then the
obtained results is set as the initial guess for the SCF iterations. Obviously the results
from ITP method is closer to the exact solutions than the random initial guess. Therefore,
with this method, the convergence for the SCF iteration will behave robuster and faster.
Denoting this method by ITP-SCF method, the algorithm is described in Algorithm 1.

To improve the quality of the random initial guess, we only need to propagate the
time evolution problem (3.2) for mitp steps, where mitp is a small number. For small
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Figure 6: Ground state calculations of Li7 and C12H10N2 using ITP-SCF. Top left: density difference versus
SCF iteration numbers. Top right: total energy of Li7 versus SCF iteration numbers for ITP generated initial
guess. Bottom left: density difference versus SCF iteration numbers. Bottom right: total energy of C12H10N2
versus SCF iteration numbers for ITP generated initial guess.

systems within 10 electrons, mitp can be chosen around 5 with the time step dt as large
as possible. As the scale of the system tends to be large, the minimum mesh size of the
radial mesh becomes small, which then results in the reduction of the allowed dt. In these
cases, mitp should be increased. Nevertheless, since the solving of the linear system (3.9)
is efficient, the initial guess generating part using ITP contributes small proportion to the
total computational cost, which can be controlled within 10% in practice.

Now we apply the presented ITP-SCF method to the simulations of two molecules
of which the SCF method failed to converge as stated in the beginning of this section.
The numerical results for Li7 and C12H10N2 are displayed in Fig. 6. Using the presented
method, both SCF iterations for Li7 and azobenzene are converged. From the two simu-
lations starting with random initial guess, it is verified that the SCF iteration using ITP
improved initial condition behaves robuster than the SCF iteration without using ITP. In
the following section, the efficiency of the presented method is verified by plenty exam-
ples.

4 Numerical examples

In this section, numerous examples ranging from atoms to molecules are simulated to
illustrate the efficiency of the presented method. The hardware is a Dell Precision T5610
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workstation with Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz (6 cores, 15 M cache), and
64 Gb of RAM. The software is the C++ library AFEABIC [4, 5].

4.1 Lithium atom

Now we test the lithium atom system which has 3 electrons associated with two 1s or-
bitals and one 2s orbital. Similar with the above example, the SCF iteration with random
initial guess and that with ITP-generated initial guess are implemented on a fixed mesh
generated using the strategy presented in the end of Section 2. We compare the two
methods in CPU time account to show the efficiency of the presented method. Numeri-
cal results can be found in Fig. 7. A radial mesh with 50 756 degrees of freedoms which
is denser in the center than the radial mesh for simulation of hydrogen atom is generated
using parameter β = 0.125, γ= 8. From the comparison of the CPU time which can be
viewed in the bottom right of Fig. 7, more than 25% reduction of the CPU time for the
method with ITP-generated initial guess compared with the method with random initial
guess is observed. Note that compared with the simulation of hydrogen atom the propor-
tion of computational cost for ITP decreases significantly. This is because the eigensolver
for the linear system is called only once after the initial guess generation using ITP, while
for the nonlinear system, the eigensolver will be called after each self-consistent field step
until the convergence criterion for SCF is satisfied. As a result, the proportion of compu-
tational cost for eigensolver is increased and in contrast that for initial guess generating
is decreased.

Figure 7: Relative CPU time comparison for example lithium atom.

4.2 Methane molecule

The presented method now is applied to the ground state simulation for the molecule
methane (CH4), which has 10 electrons in total. The numerical results are displayed in
Fig. 8. Similar CPU time reduction with the above two examples can be observed from the



Y. Kuang and G. Hu / Commun. Comput. Phys., 28 (2020), pp. 999-1018 1013

Figure 8: Results of methane. Left: comparison between SCF and ITP-SCF in terms of the number of iterations
of the eigensolver LOBPCG. Right: relative CPU time comparisons.

right of Fig. 8. Moreover, we would like to explain the reduction of the computational cost
from numerical aspect. Note that at each step of SCF, we solve the eigenvalue problem
with the LOBPCG [21] method which is an iterative method. The number of iterations of
LOBPCG at each SCF step is recorded as described in the left of Fig. 8. From this figure,
we observe the following two points. Firstly, the ITP initial guess can reduce the number
of iterations of LOBPCG. As displayed in the left of Fig. 8, at any SCF step, the number
of iterations for LOBPCG in ITP-SCF method is less than or equal to that of LOBPCG
in SCF method. Secondly, the total steps for SCF is decreased with ITP generated initial
guess. In this simulation, 36 steps for SCF with random initial guess is required to achieve
convergence, while only 27 SCF steps is required for method with ITP generated initial
guess. In summary, the SCF with ITP initial guess require less computational cost for the
SCF with random initial guess.

4.3 Summary for the numerical examples

In addition to the above three examples, a lot of simulations for ground state energies
for different atoms and molecules are implemented. The computational cost reduction of
the presented ITP-SCF method is demonstrated in the Table 1. Specifically, in the mesh
size function (2.20) parameter γ is set to be 8 in all simulations and β = 0.125 in most
simulations except in lithium example β = 0.075, in benzene (C6H6) example β = 0.175
and in azobenzene (C12H10N2) example β=0.3.

Note that the referenced energy for Li7 (D5h) is from [2], for Li14 which is on a 2×
1×1 body-centered-cubic (bcc) lattice is from [11], and for other atoms or molecules are
from the database CCCBDB [12]. Numerical results of Li7, Li14 and C12H10N2 show that
the presented ITP-SCF method behaves robuster than the SCF method which fails to
converge in these simulations. Furthermore, ITP-SCF method is efficient than SCF for
the other simulations list in Table 1 that 20% to 30% computational time can be saved.



1014 Y. Kuang and G. Hu / Commun. Comput. Phys., 28 (2020), pp. 999-1018

Table 1: Results for atoms and molecules. CPU time are compared for ITP-SCF method and SCF method in
unit second (s) of each simulation. “#DOF” means the number of degrees of freedom. “Referenced” represents
the referenced total ground state energy. Column “Percentage” stands for the CPU time of ITP-SCF dividing
by the CPU time of SCF method. “FTC” means fail to converge. Column “Energy” are values obtained using
ITP-SCF.

#DOF ITP-SCF(s) Percentage SCF(s) Energy Referenced

Li 50 756 385 77.94% 494 -7.307 -7.395

Li2 94 552 1431 75.98% 1884 -14.699 -14.727

Li3 137 711 5107 81.42% 6272 -22.059 -22.100

Li7 264 405 33568 - FTC -51.811 -52.26

Li14 607 401 297918 - FTC -103.73 -105.28

LiH 63 677 552 76.46% 723 -7.91 -7.933

CH4 141 444 2313 65.79% 3515 -40.054 -40.262

C6H6 108 351 14534 82.78% 17556 -230.847 -230.859

C12H10N2 160 291 85255 - FTC -573.117 -572.53

5 Conclusion

In this paper, an efficient ITP–SCF numerical framework is presented for solving all-
electron Kohn–Sham model. Numerical experiments show that with the ITP-computed
results, the presented method can speed up the convergence of SCF and effectively avoid
the failure of SCF iteration. However, since the presented radial mesh is fixed during
the simulation, to obtain more accurate result one has to regenerate the mesh and im-
plement the algorithm again. Furthermore, for dynamical simulations such as Born–
Oppenheimer molecule dynamics, the presented method is less of flexibility since each
movement of the nucleus would also result in a reconstruction of the computational
mesh. Hopefully, these can be handled using h-adaptive finite element framework [4,25]
which is able to provide a dynamic mesh generating way to improve the quality of the
mesh, and this would be our future work.
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A Generation of the radial mesh

The three-dimensional mesh with mesh size function (2.20) can be efficiently and rapidly
generated by the finite element mesh generator Gmsh [16]. In addition to the casual way
to generate the uniform three-dimensional mesh in Gmsh version 3.0, one just needs to
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calculate the distance from the nucleus by using the variable Attractor. Then with the
help of another variable MathEval in which the mesh size function (2.20) is implemented,
the radial mesh is generated. An example code for this part in LiH.geo file is displayed
below, from which the mesh for lithium hydride (LiH) with two nuclei can be generated,
see Fig. 9. The lithium nucleus locates at point (1.50069,0,0) and the hydrogen nucleus
locates at point (−1.50069,0,0) on the computational domain. A denser mesh grid dis-
tribution can be found around the lithium nucleus compared with the region around the
hydrogen nucleus.

beta = 0.125;

gamma = 8;

lmin = gamma/1000; // the allowed smallest length

// Vertices for the computational domain

Point(1) = {-20, -20, -20,gamma};

Point(2) = {20, -20, -20,gamma};

Point(3) = {20, 20, -20,gamma};

Point(4) = {-20, 20, -20,gamma};

Point(5) = {-20, -20, 20,gamma};

Point(6) = {20, -20, 20,gamma};

Point(7) = {20, 20, 20,gamma};

Point(8) = {-20, 20, 20,gamma};

// Nuclear positions

Point(9) = {1.50069, 0, 0,lmin};

Point(10) = {-1.50069, 0, 0,lmin};

Line(1) = {8, 7};Line(2) = {7, 6};Line(3) = {6, 5};

Line(4) = {5, 8};Line(5) = {3, 2};Line(6) = {2, 1};

Line(7) = {1, 4};Line(8) = {4, 3};Line(9) = {3, 7};

Line(10) = {2, 6};Line(11) = {8, 4};Line(12) = {5, 1};

Line Loop(13) = {9, 2, -10, -5}; Plane Surface(14) = {13};

Line Loop(15) = {1, -9, -8, -11};Plane Surface(16) = {15};

Line Loop(17) = {8, 5, 6, 7}; Plane Surface(18) = {17};

Line Loop(19) = {3, 12, -6, 10}; Plane Surface(20) = {19};

Line Loop(21) = {12, 7, -11, -4};Plane Surface(22) = {21};

Line Loop(23) = {2, 3, 4, 1}; Plane Surface(24) = {-23};

Surface Loop(25) = {24, 14, 16, 18, 20, 22}; Volume(26) = {25};

Physical Surface(27) = {16}; Physical Surface(28) = {20};

Physical Volume(29) = {26}; Physical Surface(30) = {24};

Physical Surface(31) = {18};
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Figure 9: Left: the three dimensional mesh for molecule LiH using the mesh size function (2.20) on the domain
[−20,20]3. Middle: the mesh around the hydrogen nucleus (−1.5,0,0) in X-Y plane [−2.5,−1.5]×[0,1], on which
the element shapes are kept. Right: the mesh around the lithium nucleus (1.5,0,0) in X-Y plane [1.5,2.5]×[0,1].
Generated by Gmsh [16].

// Nucleus locates on a node

Point {9,10} In Volume {26};

// Attractor field returns the distance to the point

Field[1] = Attractor; Field[1].NodesList = {9};

Field[2] = Attractor; Field[2].NodesList = {10};

// Matheval field returns the mesh size function

Field[3] = MathEval;

Field[3].F = Sprintf("F1^(6/5)*0.644394*%g + %g", beta, lmin);

Field[4] = MathEval;

Field[4].F = Sprintf("F2^(6/5)*1*%g + %g", beta, lmin);

Field[5] = MathEval;

Field[5].F = Sprintf("%g", gamma);

// Use the minimum of size functions

Field[6] = Min;

Field[6].FieldsList = {3,4,5};

Background Field = 6;
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