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ABSTRACT
In this paper, an adaptive numerical method is proposed for solving a 2D
Schrödinger equation with an imaginary time propagation approach. The
differential equation is first transferred via a Wick rotation to a real time-
dependent equation, whose solution corresponds to the ground state of
a given system when time approaches infinity. The temporal equation is
then discretized spatially via a finite elementmethod, and temporally utiliz-
ing a Crank–Nicolson scheme. Amovingmesh strategy based on harmonic
maps is considered to eliminate possible singular behaviour of the solu-
tion. Several linear and nonlinear examples are tested by using ourmethod.
The experiments demonstrate clearly that our method provides an effec-
tive way to locate the ground state of the equations through underlying
eigenvalue problems.
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1. Introduction

The ground state of a given quantum system describes its lowest energy state. The study of the ground
state plays an important role in a variety of areas such as molecular geometry optimization, photon-
absorption spectra of atoms and molecules, linear response theory in the molecular dynamics. One
popular method to calculate the ground states of given quantum systems is to solve eigenvalue prob-
lems derived from the governing equations such as the Schrödinger equation and the Kohn–Sham
equation [11] for the electronic structure calculations, and the Gross–Pitaevskii equation [13,23] for
the quantum system of identical bosons. Specifically, the form of the time-independent Schrödinger
equation is written as

Hψ = Eψ , (1)

where H is the Hamiltonian, and E and ψ represent the eigenenergy and wavefunction, respectively.
By discretizing the above equation with certain method, the ground state of the given system is
obtained by solving the following generalized eigenvalue problem

Aψh = εhBψh, (2)

where (εh,ψh) denotes the approximate eigenpair, and A and B are two discretization method
dependent matrices.

There are many mature methods for the discretization of (1), for example, the plan-wave expan-
sionmethod [14], the finite differencemethod [10], the finite element method [2,22,26], the wavelet
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method [27], the discontinuous Galerkin method [19], etc. For a many particle system, the Hamil-
tonian H would depend on the wavefunction ψ , which makes the equation nonlinear. Hence, the
generalized eigenvalue problem (2) is also a nonlinear one. In the numerical simulation, the lineariza-
tion method is necessary in solving (2), and the most popular one is the self-consistent field (SCF)
iteration. SCF iteration is quite simple, and can be described as follows. Suppose that the eigenpair
(ε(k),ψ(k)) at the kth iteration step is known, then the new eigenpair (ε(k+1),ψ(k+1)) is obtained
by solving the linear generalized eigenvalue problem A(ψ(k))ψ(k+1) = ε(k+1)ψ(k+1). The iteration
is stopped when ||ψ(k+1) − ψ(k)|| is less than a given tolerance. To date, although there are several
techniques such as mixing scheme for improving the convergence of the iteration, the theoretically
guaranteed convergent method is still desired. In the practical simulations, the convergence of the
SCF iteration sometimes is uncertain, especially when the given electronic structure is large scale
and complicated. The issue motivates the study on the alternative methods, instead of solving the
nonlinear eigenvalue problem, for the ground state calculation.

A widely-used method is the imaginary time propagation (ITP) method [4,5,15,24,28], in which
the complex-valued time-dependent Schrödinger equation is transferred to a real-valued time-
dependent problem by introducing the imaginary time. The ground state of the given system can
be obtained by propagating the real-valued system till the imaginary time approaches infinity. With
this method, solving nonlinear eigenvalue problem is avoided, and the derived real-valued time-
dependent equation can be handledwell with the classicalmethods. In the design of the algorithm, the
following two features are desired. First, the time propagation scheme should be stable and efficient.
Since the system needs to be propagated in a sufficiently long time to get a good approximation for the
ground state, a large time step in the simulation is desired to reduce the total propagation steps. Also,
the calculation in each time propagation step should also be efficient. Second, the algorithm should
be flexible enough to handle the computational domain with complicated geometry and various
boundary conditions.

To satisfy the above two requirements, the numerical method should be designed carefully.
For the temporal discretization, several classical schemes are available such as Euler schemes,
Crank–Nicolson scheme, Runge–Kutta schemes. Among these schemes, the implicit ones are the first
choice since their advantage on the stability. To match the numerical accuracy from the spatial dis-
cretization, that is, linear finite element discretization, the second-order Crank–Nicolson scheme will
be used to serve the temporal discretization of the governing equation. For the spatial discretization,
the following observations motivate us to use the finite element method. First of all, the finite ele-
ment method can handle the unstructured mesh in a natural way. With appropriate basis functions,
the finite element space can be built on both triangle and rectangle meshes, or even on the mesh with
mixed elements. It alsomeans that complex domain can be handled flexibly, which is important for the
practical simulations. Secondly, unlike the spectral method, the basis function for the finite element
method is local, which would result in a sparse system. An efficient solver such as algebraic multigrid
method together with a quality data structure for saving the sparsematrix wouldmake the solve of the
linear system very efficient. Finally, to further improve the simulation efficiency, the adaptive method
based on the finite element framework can be used for more efficient spatial discretization. This is
particularly useful when there is singularity in the numerical solution. In the market, a competitive
candidate for solving the derived temporal equation is the operator splitting scheme [12,20,21]. For
example, in [25], it is proved that Strang splitting scheme is unconditionally stable for linear problem
with monotone operator. A typical scene for operator splitting scheme is that the time propagator
is expressed by the matrix exponential, then fast Fourier transform (FFT) provides fast calculation.
However, the use of FFT introduces the dependence of the scheme on the regular domain and mesh
grids, which bring limitation of the scheme on the practical applications. It is worth mentioning that
the idea of operator splitting can still show its power in the proposedmethod by separating linear and
nonlinear part in the Hamiltonian operator and propagating them in order. With this strategy, the
simulation could be further accelerated. The study on this issue will be reported in the forthcoming
paper.
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In this paper, a framework of adaptive finite element solutions for ground state calculation of a
given quantum system is proposed. The complex-valued temporal Schrödinger equation is trans-
ferred to a real-valued temporal equation by Wick rotation first. Then the equation is discretized
temporally by Crank–Nicolson method, and spatially by linear finite element method. The moving
mesh method based on the harmonic maps [8,16] is introduced to improve the simulation efficiency.
The issues on themeshmovement and solution update are discussed in detail. Particularly, the design
of the monitor function, which is crucial for controlling the mesh quality, is studied in depth. The
effectiveness of the proposed method is demonstrated by a variety of examples including linear and
nonlinear problems.

This paper is organized as follows. In Section 2, the numerical issues including the ITP technique
and the numerical discretization for the Schrödinger equation are introduced. The mesh redistribu-
tion part will be discussed in detail in Section 3. Then three numerical experiments are demonstrated
in Section 4. Finally, the conclusion is given.

2. Numerical discretization

In this section, we will propose a numerical method by propagating the Schrödinger equation in
imaginary time via adaptive finite element discretization in space and Crank–Nicolson discretization
in time to solve the stationary Schrödinger equation.

2.1. Imaginary time propagation

ITP is often used as a solver for the eigenvalue problems such as the time-independent Schrödinger
equation (1). The basic idea of the ITP method origins from the fact that the set of eigenstates {φj} of
the Hamiltonian H forms a real orthonormal basis on its domain. To illustrate the ITP method, we
consider the ground state of a quantum system which can be modelled by a stationary Schrödinger
equation as shown in Equation (1). Actually, this time-independent Schrödinger equation originates
from the time-dependent Schrödinger equation

i
∂ψ(r, t)
∂t

= Hψ(r, t), ψ(r, 0) = ψ0(r). (3)

Here ψ0(r) is the initial condition and H can be written as

H = − 1
2∇2 + v(r, t),

where v(r, t) stands for the potential field due to the nuclei and electrons. AWick rotation of the time
coordinate, t = −iτ , transforms (3) into the following type equation:

− ∂ψ(r, τ)
∂τ

= Hψ(r, τ), ψ(r, 0) = ψ0(r), (4)

with the formal solution ψ(r, τ) = e−τHψ0r. Assume {Ei} is the set of the eigenvalues of the Hamil-
tonian operator H corresponding to the eigenstates {φi} with an increasing order, that is, E0 ≤ E1 ≤
· · · ≤ Ei ≤ · · · . After expanding the initial condition ψ0 in the basis of eigenstates {φj},

ψ0(r) =
∑
i
ciφi(r), ci = 〈φi(r)|ψ0(r)〉,

the time evolution of (4) is given by

ψ(r, τ) = e−τHψ0(r) =
∑
i

e−τEiciφi(r) = e−τE0
∑
i

e−τ(Ei−E0)ciφi(r). (5)

Asymptotically, if the initial state ψ0 is not orthogonal to the ground state φ0, then after a suffi-
ciently long time propagation, we get ψ(r, τ) → e−τE0c0φ0 since the other exponentials decay more
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rapidly. The wavefunction for the ground state then can be obtained by normalizing ψ(r, τ). To
achieve the excited states, we can propagate several different initial states simultaneously in time with
an orthogonalization process after each step.

2.2. Temporal discretization

To approximate the time evolution (5), that is, the exponential e−τH , one can use the operator splitting
methods which evaluate compositions of the operators e−τV and e−τT at different times, where T =
− 1

2∇2. For instance, the well-known Strang splitting

�h = e−(h/2)V e−hT e−(h/2)V (6)

gives a second-order approximation with h = �τ . Propagation of operator e−
h
2V in Equation (6)

is evaluated in the coordinate spaces, while the other component operator e−hT is evaluated in
the momentum spaces. To communicate information between coordinate space and momentum
space, the FFT technique is thus carried out. However, taking the requirements of FFT into account,
difficulties will appear if we consider the general problems with the non-uniform mesh on the com-
putational domain or with the non-periodic boundary condition. We thus return back to consider
the equation (4) and solve it directly.

As the Crank–Nicolson method allows a relatively large time step and the moving mesh method
provides a desired mesh for handling the singularities, we discretize (4) in time by Crank–Nicolson
method and in space by finite elementmethod. It is noteworthy that due to the functional dependence
on the density, problem (4) becomes nonlinear, which will be handled by a prediction–correction
procedure in this paper.

For simplicity, we now only consider the time-dependent Schrödinger equation corresponding to
the ground state of which the initial state can be arbitrary as lone as it is not orthogonal to the ground
state. And the excited states can be treated basically in the same way only with the different initial
conditions and requiring the orthogonality to other states.

As the Crank–Nicolson method is numerically stable and is a second-order method in time, we
apply this method to propagate the system in the imaginary time.

Let the superscript (n) denote the representation of the corresponded term at time τ = n�τ ,
where �τ is the time step. Suppose we have obtained the wavefunction at time n�τ , to achieve the
ground state φ0 associated with the lowest eigenvalue E0 of (4), we solve the time evolution problem
by applying the Crank–Nicolson method for temporal discretization on (4)

− ψ(n+1) − ψ(n)

�τ
= 1

2
(H(n+1)ψ(n+1) + H(n)ψ(n)), ψ(0) = ψ0. (7)

Rearranging the terms we have(
H(n+1) + 2

�τ

)
ψ(n+1) =

(
−H(n) + 2

�τ

)
ψ(n), (8)

with H(n) = −∇2/2 + v(n).

2.3. Finite elementmethod for spatial discretization

In finite element method the wave function ψ(r) is expanded as a sum of the piecewise-polynomial
basis functions {ϕi} on a set of real space interpolation nodes with a set of coefficients {ψi},

ψ(r) =
Nbasis∑

i
ψiϕi, (9)
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where Nbasis stands for the dimension of space Vh spanned by the basis functions, and ψi is the ith
basis function which is typically chosen in such a way that ψi is 1 on ith finite element interpolation
node while 0 on all other nodes. As a result, the ith coefficient of the wave function ψi is actually the
value of the wave function itself on the corresponding nodes.

To find an approximate solution, we discretize the equation within the subspace Vh. In this way,
solving Equation (8) is reduced to solve the following system

Aψ(n+1) = Bψ(n). (10)

Here A and B are two matrices with the entries

Ai,j = 1
2

∫



(∇ϕi · ∇ϕj) dr +
∫



v(n+1)ϕiϕj dr + 2
�τ

∫



ϕiϕj dr, (11)

Bi,j = −1
2

∫



(∇ϕi · ∇ϕj) dr −
∫



v(n)ϕiϕj dr + 2
�τ

∫



ϕiϕj dr. (12)

Therefore, if Ai,j and Bi,j are clear, we can obtain ψ(n+1) from the system (10), and we can attain
the excited states in this same way with the same Ai,j and Bi,j. Since all the states are required to be
orthonormal, we need to orthogonalize these states after each step. Here we use the Gram-Schmidt
method to orthogonalize these states.

While back to the system (10), note that the potential term v(n+1) might rely on the ψ(n+1), for
example, the coupled Gross–Pitaevskii system, which leads (10) to be a nonlinear system. Therefore,
the potential v(n+1) must be obtained by iterative methods. That is, the wave function {ψ(n+1)} is
solved from Equation (10), and then the potential v(n+1)(r) is updated with respect to the new wave-
function. In this way we can obtain the new wavefunction {ψ(n+1)} and then the new v(n+1)(r) and
so forth. To end up the iterations, the following criterion is used

‖v(n+1)
k+1 − v

(n+1)
k ‖2 < tol1, (13)

where v(n+1)
k+1 and v(n+1)

k stand for the potential term obtained from two adjacent iterations, and tol1
is an user-defined tolerance.

Once the decision criterion is satisfied, the time-evolution problem will propagate forward with
one time step. Then the iterative process will be implemented on the same finite element space again
for the new time step. The evolution will propagate forward all the time until the wavefunction
converge or the following criterion is achieved∑

‖ψ(n+1) − ψ(n)‖2 < tol2, (14)

where tol2 is another user-defined tolerance.
Consider that thewavefunction variesmuch greater in the vicinity of the nuclei and between atoms

of chemical bonds than in other regions, a mesh that contains a dense distribution of girds at these
places while a sparse one in other places would be favoured to a uniformmesh with the same amount
of grids. Based on this consideration, a mesh redistribution process is adopted. Detailed algorithm
will be showed in the next section.

3. Mesh redistribution

In this section, we briefly review the mesh redistribution strategy introduced in [16,17], and discuss
the generation of the monitor function in detail. To review the harmonic map based strategy, we first
give Algorithm 1 for the flowchart of the algorithm, then the main components of the algorithm are
introduced in the following subsections.
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Algorithm 1Mesh Redistribution based on harmonic maps
Require: The wavefunction ψ(n) at time t(n) and a regular fixed logical domain 
C with grid

distribution Tini.
1: Obtain the mesh distribution TC on
C by solving the generated minimization problem byψ(n).
2: while ‖TC − Tini‖L∞ > tol do
3: Use the difference between TC and Tini to achieve the movement of mesh grids on physical

domain
.
4: Update the solution ψ(n) on the new mesh.
5: Solve the generated minimization problem by the updated ψ(n) to get TC.
6: end while

3.1. Mesh-redistribution algorithm based on harmonicmaps

Consider two n-dimensional compact domain 
 and 
c with certain local coordinates −→x and
−→
ξ ,

respectively. Denote a map
−→
ξ = −→

ξ (
−→x ) between 
 and 
c, then following Dvinsky and Brackbill

the energy of this map can be written as

E(
−→
ξ ) = 1

2

∫



Gij ∂ξ
α

∂xi
∂ξβ

∂xj
dx, (15)

where the inverse of Gij is the monitor function and note that in this paper the Einstein summation
convention is assumed. Following Li et al. [16], we call
 the physical domain,
c the logical domain,
andM = (Gij)−1 the monitor function.

To redistribute the mesh grids in a uniform manner, Li et al. [17] proposed a way to obtain the
harmonic map from solving an optimization problem. For simplicity, we consider the physical prob-
lems in two space dimensions. Assume that
 is a polyhedron. Let �i and �c,i be the edges of
 and

c respectively. To maintain the geometrical characters of the physical domain with the movement
of the boundary grids, a mapping which maps the vertexes (edges) of the physical domain to the
corresponding vertexes (edges) of the logical domain should be adopted. Therefore, it’s reasonable to
consider the following mapping set from ∂
 to ∂
c,

K = {−→ξ b ∈ C0(∂
)|−→ξ b : ∂
 → ∂
c;
−→
ξ b|�i is a piecewisely linear mapping without

degeneration of the Jacobian.} (16)

Existence and uniqueness are provided by the theory of Eells and Sampson [9] that for every−→
ξ b ∈ K there exists a unique

−→
ξ : 
 → 
c such that

−→
ξ |∂
 = −→

ξ b and
−→
ξ is the extreme of the

functional (15). Based on the above discussion, we are going to solve the following problem

min
∫



Gij ∂ξ
k

∂xi
∂ξ k

∂xj
dx,

s.t.
−→
ξ |∂
 = −→

ξ b ∈ K .

(17)

Once the harmonic map
−→
ξ has been achieved, the difference between the newmesh given by

−→
ξ and

the initial mesh on logical domain 
C is computed and will be used to redistribute the interior and
boundary grids on the physical domain
.

Details of the Algorithm 1 are discussed in the following. Consider a two-dimensional physical
domain
, assume that the mesh on
 is denoted by T with Ti as its element, and Xi as its node. For
the logical domain 
C, we use TC to denote the associated mesh with Ti,C as its element, Ai as its
node, respectively.
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By solving the following optimization problem the initial mesh Tini on
C is generated

min
∑
k

∫



∑
i

(
∂ξ k

∂xi

)2

dx

s.t.
−→
ξ |∂
 = −→

ξ b ∈ K.

(18)

Tini is only used as a reference and is fixed once obtained. In practice, if the physical domain is convex
and is of regular shape (say a convex polygon), then we simply choose the physical domain as the
logical domain with uniform initial mesh.

From Algorithm 1 the motion of the mesh on 
 is implemented in an iteration manner. Firstly
we have to solve the optimization problem (17). Note that the efficiency of the solver for (17) is more
important than its accuracy since by the solver we only try to improve the mesh property, that is,
not the physical solution. However, the linear system generated from (17) is neither Hermitian nor
positive definite, which results in difficulty for the efficient solver. To resolve the difficulty, it was
suggested in [17] that the system be decoupled into two smaller systems: one is for the grid points on
the boundary, and the other is for the interior grid points. Although there is also no good property
for the first system, it is much smaller than the original system, and a generalized minimal residual
method can be applied to solve it. For the second one, a multi-grid method is adopted to solve it
because it is Hermitian and positive definite. Furthermore, Di et al. [7] proposed a new approach
based on an algebraic multi-grid method to speed up the implementation for Equation (17). In our
simulation this technique is adopted for solving Equation (17).We refer to Di et al. [7] and references
therein for details.

Once
−→
ξ is obtained by solving Equation (17), the difference between the new mesh generated

TC from
−→
ξ and the fixed mesh Tini on 
C will be computed. If L∞ norm of the difference is small

enough, that is,

‖TC − Tini‖L∞ < tol3,

the iteration is then stopped, otherwise we will use the following procedures to get the movement of
mesh grids on physical domain
.

If the L∞ norm of the difference is greater than tol3, the following formula is then used to generate
the direction and magnitude of movement for each grid point on
,

δXi =
∑

T |T | ∂x
∂ξ

|in T δAi∑
T |T | , (19)

where δAi = Aini
i − Ai, and T stands for the element in the physical domain which has Xi as one of

the vertexes, and |T | is its volume. ∂x/∂ξ is given by solving the following system in each element,⎛
⎜⎜⎜⎝
∂x1

∂ξ 1
∂x1

∂ξ 2

∂x2

∂ξ 1
∂x2

∂ξ 2

⎞
⎟⎟⎟⎠
(A1

Tc,1 − A1
Tc,0 A1

Tc,2 − A1
Tc,0

A2
Tc,1 − A2

Tc,0 A2
Tc,2 − A2

Tc,0

)
=
(
X 1
T ,1 − X 1

T ,0 X 2
T ,1 − X 2

T ,0

X 1
T ,2 − X 1

T ,0 X 2
T ,2 − X 2

T ,0

)
, (20)

where (X 1
T ,i, X 2

T ,i) represents the ith vertex of the element T in the physical domain 
, and
(A1

Tc,i, A
2
Tc,i) represents the ith vertex of its corresponding element Tc in the logical domain 
c,

here i = 0, 1, 2 in 2D case. It can be shown the above volume weighted average (19) converges to a
smooth solution in measure when the size of the mesh goes to 0.

After we get δXi, the grid points in the physical domain
 is updated by

X new
i = Xi + τδXi, (21)

where τ is a parameter in [0, 1] and is used to avoid the mesh tangling.
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The method for updating the wavefunction is one kind of interpolation-free solution-updating
methods, which makes the implementation much simpler than the interpolation methods, and the
details of the method is shown in the next subsection in this part.

Note that themonitor function in Equation (17) plays an important role in the simulations. A good
monitor function can help on resolving the important regions in the physical domain with a smooth
and regular enough mesh grid distribution. In the end of this part the design of the monitor function
will be discussed.

3.2. Solution update

After the mesh-redistribution in the physical domain, we need to update the solution u on the new
mesh. Each element T with its nodes X in the previous mesh corresponds uniquely to an element
T ∗ with its nodes X + τδX in the redistributed mesh. Also there is an affine map between the two
elements. The combination of the affine maps from every element in the previous mesh to the cor-
responded element in the new mesh hence composes an piecewise affine map between the previous
mesh and the new mesh. The surface of u on 
 will not change though the nodes of the mesh will
be moved to new locations. Therefore, once we moved the mesh, an additional convection procedure
thatmakes u ‘flowing back’ is necessary to keep u unchanged. Denote that the function ofmeshmove-
ment (δx)k = (δXi)

k�i(x, τ) and k= 1,2 in two-dimensional case with�i(x, τ) the basis function of
the finite element space associated with the node Xi + τδXi. Then the convection procedure can be
governed by the following equation

uτ − δx · ∇u = 0. (22)

In the finite element space, u also can be expressed as

u = Ui(τ )�i(x, τ), (23)

where Ui(τ ) is the value of u at the node Xi + τδXi. Then the semi-discrete system for updating u
can be deduced from the above result∫




{
∂Ui(τ )

∂τ
�i(x, τ)− Ui(τ )

∂�i

∂xk
(δx)k

}
v dx = 0 ∀v ∈ VT(
). (24)

Let v be the basis functions of the finite element space, that is, v = �j(x, τ), then a system of linear
ODEs for Ui is obtained ∫




�i�j dx
∂Ui

∂τ
=
∫



∂�i

∂xk
(δx)k�j dxUi(τ ). (25)

With a three-stage Runge–Kutta scheme the system can be solved. This procedure, based on the fact
that the surface ofu is not changed, provides an interpolation-free solution-updating in the newmesh.

3.3. Monitor function

From the expression of the optimization problem (17), the property of themovedmesh is determined
by the monitor function. Therefore, the choose of the monitor function plays a very important role
in the process of mesh redistribution. For different physical problems, different monitor functions
are designed to obtain a desired mesh which can appropriately distribute the grids on the physical
domain according to the problems. Generally, ameshwhich has dense grid distribution in the regions
where the solution varies heavily, that is, where the gradient of the solution is large, and sparse grid
distribution on the places where the solution changes little is favoured. As for our model, because of
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the existence of singularities a mesh with dense grid distribution around singularities is required. We
choose the monitor function as below

M =
⎛
⎝
√√√√ε +

occ∑
i

|∇φ(x)|2
⎞
⎠ I, (26)

where I stands for the identity matrix. With this monitor function the grid points move towards to
the region around the singularity with large gradient of the wavefunctions, however, we also observe
that in the region with small gradient far away from the singularity the grid points are almost kept
unchanged, see the left of Figure 1. The new monitor function was then proposed to overcome the
distortion,

M =
⎛
⎝
√√√√ε + ñ +

occ∑
i

|∇φ(x)|2
⎞
⎠ I, (27)

Figure 1. The top two figures show the meshes for the hydrogen system in the computational domain [−10, 10]×[−10,10] using
monitor function M1 = (

√
ε + |∇ψ(r)|2 )I (top left) and M2 = (

√
ε + |∇ψ(r)|2 + ñ )I (top right), respectively. The bottom two

figures show the corresponding detailed meshes on domain [−2, 2]×[−2,2] around the nucleus.
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where the new term ñ is the solution of the following equation

∂ ñ
∂t

− δ�ñ = 0 (28)

with the initial condition ñ0 = ∑occ
i |∇φi(x)|2 and δ a parameter depends on the size of the physical

domain.With the diffuse term ñ in the monitor function, the grid redistribution process gives a mesh
with better regularity and smoothness which sufficiently improves the mesh quality, see the right of
Figure 1.

Based on the Harmonic maps, we can get a mesh which obtains the properties mentioned in the
last section from the initial uniform mesh. The mesh redistribution process happens between two
adjacent imaginary time step which results in that the mesh redistribution process is relatively inde-
pendent on the time evolution problem. Precisely, the movement of the mesh based on Harmonic
maps takes place after obtaining a numerical solution from the partial differential equation (PDE)
solver at time t(n). Once the mesh is determined, the finite element space will be rebuilt and the
numerical solution will be updated. Then the PDE solver will be adopted in the new mesh to obtain
the numerical solution at time t(n+1) and the mesh redistribution process will be applied again. In
this way, we can separate the algorithm for solving the problem (4) into two parts, one is numeri-
cally solving the PDE discussed above and the other is mesh redistribution. The PDE solver pass the
mesh and numerical solution tomesh redistribution solver, and themesh redistribution solver returns
the new mesh and updated numerical solution back to the PDE solver. The algorithm is showed in
Algorithm 2.

Algorithm 2 Solving Schrödinger equation
Require: A random initial wavefunctionψ(0) satisfying the boundary condition, start time t(0) = 0,

and time step�t.
1: while ‖ψ(n+1) − ψ(n)‖L2 > tol1 do
2: t(n+1) = t(n) +�t;
3: Implement Algorithm 1.
4: k = 0;
5: while ‖ψ(n+1)

k+1 − ψ
(n+1)
k ‖L2 > tol2 do

6: if k = 0 then ψ(n+1)
k = ψn

7: end if
8: Solve the system to obtain ψ(n+1)

k+1 using the numerical method presented above.
9: end while
10: end while

4. Numerical examples

In this section, the effectiveness of the proposedmethod is tested by three examples. In the first exam-
ple, the ground state of a hydrogen atom is simulated, and the advantage of the moving mesh method
can be observed obviously. Besides the ground state of a given system, the excited states can also be
simulatedwith the proposedmethod, which is shown by our second example inwhich an anharmonic
oscillator system is considered. In the last example, a coupled Gross–Pitaevskii system is examined
numerically, and the results successfully show that the proposed method can also be used to handle
the nonlinear problem.
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4.1. Two-dimensional hydrogen atom

In two-dimensional case, the stationary Schrödinger equation of the hydrogen atom is written as

− 1
2
∇2u − 1

|x|u = λu. (29)

The lowest eigenvalue of this equation is −2.0. For the derivation, please refer to the appendix. The
physical domain for this problem is designed as [−10, 10] × [−10, 10]. The uniformmeshes are gen-
erated from refining the coarsest mess which contains 145 points. As discussed in Section 2.1, as long
as the initial state does not orthogonal to the ground state of the system, the wavefunction will con-
verge to the ground state. Thus generally, a random guess can be used as the initial condition. The
wavefunction is propagated from time τ = 0 to τ = 100 with imaginary time step �τ = 0.2 in this
experiment. The results are showed in the left of Figure 2. From the figure we can see that with the
redistribution of the mesh both the convergence rate and accuracy achieved are superior to that of
a fixed mesh. The convergence rate of the solver with mesh redistribution reaches 2.0, which shows
that the eigenvalue problem converges at an expected rate of convergence for the linear finite element
method. Besides the numerical accuracy, the CPU time needed in the simulation is also studied. The
results are shown in the right of Figure 2. From the results, we can see that to get the same accuracy of
the numerical solution, our mesh redistribution method always needs less mesh grids and CPU time
compared to the fixed mesh case.

4.2. Anharmonic oscillator

This example concerns a non-separable non-degenerate two-dimensional anharmonic oscillator
system [6] which is designed to test the algorithmproposed in this paper. TheHamiltonian is given by

H = −∇2 + V(x, y)

= − ∂2

∂x2
− ∂2

∂y2
+ (4xy2 + 2x + 1)2

+ (4x2y + 2
√
2y + √

2)2 − 4(x2 + y2)− (2 + 2
√
2).

The computational domain is chosen as [−4, 4] × [−4, 4] on which an initial uniform mesh con-
taining 333 grid points is set. To check the convergence of the presented algorithm, four other initial

0.001

0.01

0.1

1

 10

100 1000 10000 100000

E
rr

or
 o

f g
ro

un
d-

st
at

e 
en

er
gy

 (
lo

g)

Number of DOF (log)

Redistributed mesh
Fixed mesh

Second order curve

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

1 10 100 1000 10000

T
ot

al
 e

ne
rg

y 
(h

ar
tr

ee
)

CPU Seconds (log)

145

145

545

545

2113

2113

8321

8321

33025

33025

Redistributed mesh
Fixed mesh

Figure 2. Left: Convergence rate of the eigenvaluewith fixed uniformmesh andwithmovingmesh for the two-dimensional hydro-
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meshes are obtained by successively refining the coarsest initialmesh. To achieve the ground state, first
and second excited states, three random orthogonal wavefunctions are propagated simultaneously
from time τ = 0 to τ = 2.5 with the imaginary time step�τ = 0.001. The exact ground state energy
for the anharmonic oscillator is E0 = 0. For the excited states we compare the result with a Chebyshev
polynomial discrete variable representation (DVR) calculation using 3600 basis functions [6,18]. The
DVR results of the first and second excited states are E1 = 4.36598 and E2 = 7.0667, respectively. The
numerical results using our method are demonstrated in Table 1, which are in agreement with DVR
results and shows that the convergence rate is in accord with the analysis of the method we employed.

Table 1. Numerical errors and convergence order for the two-dimensional oscillator system: Error0, Error1 and Error2 represent the
error of energies of the ground state, first and second excited states, respectively.

DOF Error0 rate0 Error1 rate1 Error2 rate2

333 4.44996 × 10−1 – 1.38691 × 100 – 1.40222 × 100 –
1265 1.16386 × 10−1 1.94 3.83720 × 10−1 1.85 3.70973 × 10−1 1.92
4929 2.94208 × 10−2 1.98 9.74203 × 10−2 1.98 9.42285 × 10−2 1.98
19457 7.37918 × 10−3 2.00 2.44961 × 10−2 1.99 2.37104 × 10−2 1.99
77313 1.84640 × 10−3 2.00 6.13481 × 10−3 2.00 5.98698 × 10−3 1.99

Figure 3. The ground state for the coupled Gross–Pitaevskii system. Top left: the initial uniform mesh with 8321 mesh grids. Top
right: the redistributed mesh. Bottom: the ground state of the GPES where the left is forψ(1) and the right is forψ(2) .
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4.3. A coupled Gross–Pitaevskii system

In this example we take a two-dimensional condensate [3] into account. We use our method to com-
pute the ground state of the coupled Gross–Pitaevskii equations. This experiment well demonstrate
the reliability of our method and nicely illustrate the effect of phase segregation. The system consist
of two GPEs,

i∂tψ(l) =
[
−1
2
∇2 + Ul +

2∑
k=1

vlk|ψ(k)|2
]
ψ(l)

‖ψ(l)‖2L2 = Nl, l = 1, 2

(30)

with scaled and off-centred harmonic potentials (see, e.g. [1])

Ul = 1
2 [(ω1l(x − xl))2 + (ω2l(y − yl))2]

with

ω11 = ω21 = π , x1 = y1 = 0,ω12 = ω22 = 3π , x2 = 0.19, y2 = 0

and the intra-species coupling constants

v11 = 1.3 × 10−6, v12 = v21 = 1.0 × 10−6, v22 = 1.3 × 10−11.

We set the same number of the particlesN1 = N2 = 107. Then we perform our numerical experi-
ments with different monitor functions on domain [−3, 3] × [−3, 3] with 4305 grid points. From the
results of Figure 3 we can see the phase segregation clearly which agrees with the observation in [3].

5. Conclusions

In this paper, an adaptive finite element algorithmusing ITP is proposed to solve the two-dimensional
Schrödinger equation. The numerical discretization consists of the Crank–Nicolson scheme for the
tempoal discretization, and the linear finite element method for the spatial discretization. To handle
the singularity appeared in the simulations, a moving mesh method is proposed to redistribute the
mesh grids, and the design of the monitor function is discussed in detail. A prediction–correction
procedure is introduced to resolve the nonlinearity of the problem. Numerical experiments success-
fully show that desired convergence order can be obtained from the simulations on the successively
refined meshes, and that quality mesh is generated during the simulations with the moving mesh
module in the algorithm which improves the numerical solution effectively.

One future work is to explore the applications of the proposed numerical method in this paper
for solving more complex systems in Kohn–Sham density functional theory, which potentially is a
competitive alternative for the calculations of the ground state of the electronic structures, compared
with solving the nonlinear eigenvalue problems.
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Appendix. Ground state energy to a hydrogen atom in two-dimensional space
Here analytic method for obtaining the ground state energy of two-dimensional hydrogen system is shown. The system
can be described by the following equation [

−1
2
∇2 − 1

|r|
]
ψ(r) = Eψ(r)

with the nucleus located at the origin. Using polar coordinates r = (r, θ) and then we separate the wavefunction

ψ(r) = R(r)Y(θ).

With the Laplacian expression in polar coordinates

∇2 = ∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2
∂2

∂θ2

the Schrödinger equation then becomes

r2

R

(
d2R
dr2

+ 1
r
dR
dr

)
+ 2r2

(
1
r

+ E
)

= − 1
Y
d2Y
dθ2

,

which follows that
1
Y
d2Y
dθ2

= −m2;

1
2

(
d2R
dr2

+ 1
r
dR
dr

)

−m2

2r2
R +

(
1
r

+ E
)
R = 0.

Now set κ = √−2E, ρ = κr and ρ0 = 2/κ . Then(
d2R
dρ2

+ 1
ρ

dR
dρ

)
− m2

ρ2
R +

(
ρ0

ρ
− 1

)
R = 0.

Since the spectrum is symmetric under m → −m, we can choose m ≥ 0. After looking at the ρ → 0 and ρ → ∞
behaviour of R(ρ), R(ρ)must have the form like ρm e−ρv(ρ), as a result v(ρ) should satisfy

ρv′′(ρ)+ (2m + 1 − 2ρ)v′ − (2m + 1 − ρ0)v = 0.

Now expand v(ρ) to a power series v(ρ) =
∞∑
0

cjρj. Substitute v(ρ) in the above differential equation and rearrange

the terms then we obtain the following relationship

cj+1 = 2j + 2m + 1 − ρ0

j(j + 1)+ (j + 1)(2m + 1)
cj.

Let us assume that the series contain an infinite number of terms. For large j, the coefficients of the series behave like

cj+1

cj
→ 2

j
, that is: cj ∼ 2j

j!
.

Recall that eρ = ∑
j ρ

j/j!, whose coefficient is even less than 2j
j! , we see that the recursion relation between cj produces

a function v(r) that grows faster than eρ , that is, produces non-physical diverging solutions. To prevent this from
happening, the power series of v should be terminated, which gives

ρ0 = 2jmax + 2|m| + 1 for jmax ≥ 0,

where we have used them → −m symmetry to replacem by |m|. Finally we get
ρ0 = 2k + 1 with k = 0, 1, 2 . . . ;

κ = 2
ρ0

= 2
2k + 1

;

E = −1
2
κ2 = −1

2
1

(k + 1/2)2
.

Hence the ground state energy of 2D hydrogen atom should be E0 = −2.
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