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AN ORTHOGONALIZATION-FREE PARALLELIZABLE
FRAMEWORK FOR ALL-ELECTRON CALCULATIONS IN

DENSITY FUNCTIONAL THEORY\ast 

BIN GAO\dagger , GUANGHUI HU\ddagger , YANG KUANG\S , AND XIN LIU\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . All-electron calculations play an important role in density functional theory, in which
improving computational efficiency is one of the most needed and challenging tasks. In the model for-
mulations, both the nonlinear eigenvalue problem and the total energy minimization problem pursue
orthogonal solutions. Most existing algorithms for solving these two models invoke orthogonalization
process either explicitly or implicitly in each iteration. Their efficiency suffers from this process in
view of its cubic complexity and low parallel scalability in terms of the number of electrons for large
scale systems. To break through this bottleneck, we propose an orthogonalization-free algorithm
framework based on the total energy minimization problem. It is shown that the desired orthog-
onality can be gradually achieved without invoking orthogonalization in each iteration. Moreover,
this framework fully consists of BLAS operations and thus can be naturally parallelized. The global
convergence of the proposed algorithm is established. We also present a preconditioning technique
which can dramatically accelerate the convergence of the algorithm. The numerical experiments on
all-electron calculations show the effectiveness and high scalability of the proposed algorithm.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . density functional theory, all-electron calculations, total energy minimization,
orthogonalization-free, scalability

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35Q55, 65N30, 90C06

\bfD \bfO \bfI . 10.1137/20M1355884

1. Introduction. We aim to find the ground state solution of a molecular sys-
tem from all-electron calculations. In view of Kohn--Sham density functional theory
(KSDFT) [31], this can be achieved by solving the lowest p eigenpairs of the Kohn--
Sham equation:

(1.1) \^H\psi l(\bfitr ) = \varepsilon l\psi l(\bfitr ), l = 1, 2, . . . , p,
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where \^H is the Hamiltonian operator, \psi l(\bfitr ) is the lth wavefunction (eigenfunction), \varepsilon l
refers to the corresponding eigenenergy, and p denotes the number of occupied orbitals.
In this paper, we consider closed-shell systems in which there are two electrons in
each occupied orbital. Alternatively, the ground state solution can be obtained by
minimizing the total energy with orthogonality constraints [43]:

(1.2)
min
\Psi 

EKS(\Psi )

s. t. \langle \Psi , \Psi \rangle = Ip,

where \Psi = (\psi 1, \psi 2, . . . , \psi p), EKS denotes the Kohn--Sham total energy, \langle \cdot , \cdot \rangle stands
for the inner product, and Ip denotes the p\times p identity matrix. For notation brevity,
we drop the subscript and let I = Ip. The detailed expressions of the Hamiltonian
operator and the Kohn--Sham total energy will be introduced in the next section.

1.1. Literature review and challenges. In electronic structure calculations,
the pseudopotential approaches have proven to be successful in predicting electrical,
magnetic, and chemical properties for a wide range of materials [45]. However, the
pseudopotentials can hardly construct the transition metals accurately [34] and tend
to mispredict the material properties under extreme environment [54], though modern
optimized norm-conserving Vanderbilt and projector augmented wave potential for-
mulations have enabled accurate and efficient calculations for the whole of the periodic
table over a wide range of external conditions, e.g., [25, 56]. As a result, all-electron
calculations which treat the Coulomb external potential exactly are in demand.

One of the most challenging aspects in all-electron calculations is the computa-
tional efficiency, which is usually dominated by two factors: the singularities arising
from the Coulomb external potential and the orthogonality constraints of the wave-
functions.

To handle the singularities, the numerical discretization is generally required to
be well designed in such a manner that it is able to capture the sharp variations of
the orbitals and meanwhile describe the results on the regions where the orbitals vary
slightly with the least effort. Various discretization schemes have been proposed for
all-electron calculations, for example, the finite difference method [12], the atomic
basis set method [2], the finite element method [53, 51, 6], etc. Specifically, the
finite element discretization, which has a local basis and allows a spatially adaptive
resolution, has received a lot of attention in recent decades including the h-adaptive
finite element method [9, 3, 4, 10, 14], the p-adaptive finite element method [47, 41, 38],
the enriched finite element method [28, 46], and the FE method with a priori designed
mesh [33, 50, 32]. Remark that the state-of-the-art all-electron calculations using a
finite element basis are able to solve large systems containing more than 8000 electrons;
see, e.g., [28, 40, 46]. In this work, we follow the finite element method presented in
[32] to handle the singularities.

When the quantum system is large, all-electron calculations become expensive
[35]. In particular, keeping the orthogonality of the orbitals becomes the bottleneck
in most existing algorithms. The self-consistent field (SCF) method and its variants
[31, 29] are commonly used to solve the Kohn--Sham equation (1.1). The SCF methods
with different charge mixing schemes, for example, Pulay mixing and the Anderson
mixing, have been shown to be robust and have been efficiently implemented in many
widely used packages, e.g., [52, 40, 49, 15, 23, 22, 24, 17, 48, 36, 37, 55]. In addi-
tion to the SCF approaches, there are optimization methods based on solving the
total energy minimization problem (1.2) directly. However, as the eigensolver in the
SCF methods, most of the optimization methods, such as QR retraction [57] and
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Fig. 1. Flowchart of the framework for ground state calculations.

multipliers correction framework [18], carry out an orthogonal update that preserves
the orthogonality of the orbitals. Namely, a certain orthogonalization process such
as the Cholesky-based Gram--Schmidt method [20] is invoked in each iteration. Note
that the orthogonalization process costs at least \scrO (p3) per iteration. Hence, these
methods may be not competent in solving large quantum systems due to this cubic
complexity and the low scalability of any orthogonalization process.

Several algorithms have been exploited to avoid the orthogonalization. Linear
scaling methods [8, 35] build the solutions by direct minimization of unconstrained
variational formulations. Recently, an unconstrained optimization algorithm based on
the augmented Lagrangian method has been proposed in [19]. Here, ``unconstrained""
indicates that the iterate is not required to satisfy the constraints in each iteration.
The orthogonality can be guaranteed at any cluster point of the iteration sequence.
Another favored property of this algorithm is that it is not sensitive to the choices
of initial guess and parameters, which makes it robust. Moreover, it is illustrated
both theoretically and numerically that this algorithm does not highly rely on any
prior knowledge of the studied system. All the calculations in the algorithm fully
consist of BLAS operations. Thus it can be naturally parallelized. In view of these
features, a parallelizable framework based on this unconstrained minimization method
for all-electron calculations is proposed.

1.2. Contribution. In this paper, we provide an algorithm framework for all-
electron calculations in the density functional theory. The framework consists of four
parts shown in Figure 1, i.e., the preprocessing part for configuring the problem, the
discretization part for numerically discretizing the continuous problem, the solving
part for obtaining the solutions of the discretized system, and the postprocessing part
for transforming the numerical solutions for further applications.

The efficiency of all-electron calculations benefits from the following aspects of the
proposed framework in Figure 1: (i) a quality finite element space is designed for the
given electronic structure based on the a priori analysis; (ii) an orthogonalization-free
method is proposed and analyzed for the discretized minimization problem; (iii) high
scalability is successfully demonstrated by numerical examples.

More specifically, in preparation of the tetrahedron mesh, the decay of the external
potential is studied with the linear interpolation theory in [26, 50, 32], and a strategy
on generating radial mesh for optimally capturing such decay is designed for a given
electronic structure. It is noted that a quality finite element space would be built
based on the radial mesh, and the efficiency of the algorithm would benefit from the
sparsity of the discretized system and the mature and robust solvers for the sparse
system such as the algebraic multigrid method.

The new method for the discretized optimization problem (1.2) is proposed by
extending the parallelizable columnwise augmented Lagrangian (PCAL) method [19]
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from the following two aspects. First, the PCAL is revised to handle the minimization
problem with general orthogonality constraints, X\top BX = I, rather than the standard
ones, X\top X = I. The global convergence of the new method is established theoret-
ically. Second, a preconditioning strategy is proposed for the class of the PCAL
methods, and a specific preconditioner is designed for all-electron calculations, which
dramatically accelerates the convergence in the simulations.

As an attractive feature of the proposed algorithm, the robustness is successfully
shown by a variety of numerical experiments, i.e., a random initial guess works for all
numerical experiments in this paper, and the numerical convergence of the algorithm
is not sensitive to the selection of the parameters. Finally, the high scalability of the
algorithm is demonstrated by the numerical examples, which obviously indicates the
potential of our algorithm for large scale systems.

1.3. Notation and organization. \BbbS \BbbR p\times p := \{ S \in \BbbR p\times p | S\top = S\} refers to
the set of p\times p real symmetric matrices. \sigma min(A) denotes the smallest singular value
of given real matrix A. Diag(v) \in \BbbS \BbbR n\times n denotes a diagonal matrix with all entries
of v \in \BbbR n in its diagonal, and diag(A) \in \BbbR n extracts the diagonal entries of matrix
A \in \BbbR n\times n. For convenience, \Theta (M) := Diag(diag(M)) represents the diagonal matrix
with the diagonal entries of square matrix M in its diagonal. sym(A) := 1

2 (A+ A\top )
stands for the average of a square matrix and its transpose.

The organization of this paper is as follows. The KSDFT and its discretization
are presented in section 2. In section 3, we present the algorithm and its convergence
results. The implementation details of the proposed framework are described in sec-
tion 4, and the numerical experiments are reported in section 5. In the end, we draw
a brief conclusion.

2. Finite element discretization for KSDFT. In this section, we introduce
the detailed formulations for KSDFT and the discretization part as illustrated in
Figure 1.

2.1. KSDFT. We consider a molecular system in \BbbR 3 consisting of M nuclei of
charges Z1, . . . , ZM locating at the positions \bfitR 1, . . . ,\bfitR M and 2p electrons in the non-
relativistic setting. The atomic unit is adopted in this work. Thus the Hamiltonian
operator \^H in the Kohn--Sham equation (1.1) can be written as

(2.1) \^H =  - 1

2
\nabla 2 + Vext(\bfitr ) + VHar([\rho ]; \bfitr ) + Vxc([\rho ]; \bfitr ),

where the notation V ([\rho ]; \bfitr ) implies that V is a functional of the electron density
\rho (\bfitr ) =

\sum p
l=1| \psi l(\bfitr )| 2. The first term  - \nabla 2/2 in \^H is the kinetic operator. The second

term in \^H describes the Coulomb external potential due to the nuclei which takes the
form

(2.2) Vext(\bfitr ) =  - 
M\sum 
j=1

Zj

| \bfitr  - \bfitR j | 
.

The third term is the Hartree potential describing the Coulomb repulsion among the
electrons:

(2.3) VHar([\rho ]; \bfitr ) =

\int 
\BbbR 3

\rho (\bfitr \prime )

| \bfitr  - \bfitr \prime | d\bfitr 
\prime .

The last term Vxc stands for the exchange-correlation potential, which is caused by
the Pauli exclusion principle and other nonclassical Coulomb interactions. Note that

D
ow

nl
oa

de
d 

06
/2

2/
22

 to
 5

9.
38

.3
2.

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ORTHOGONALIZATION-FREE FRAMEWORK FOR KSDFT B727

the analytical expression for the exchange-correlation term is unknown, and therefore
an approximation is needed. Specifically, the local density approximation from the
library Libxc [39] is adopted in this work.

The total energy of the given quantum system consists of several parts:

(2.4) EKS = Ekinetic + Eext + EHar + Exc + Enuc,

where Ekinetic is the kinetic energy and Eext, EHar, Exc, and Enuc are the potential
energies induced by Vext, VHar, Vxc, and the nucleus-nucleus potential, respectively.
Denoting the exchange-correlation energy per particle by \epsilon xc(\rho ), Vxc is the functional
derivative of \epsilon xc(\rho ) with respect to \rho , i.e., Vxc = \delta \epsilon xc(\rho )/\delta \rho . As a result, it follows
that

Ekinetic =
1

2

p\sum 
l=1

\int 
\BbbR 3

| \nabla \psi l| 2d\bfitr , Eext =

\int 
\BbbR 3

Vext\rho (\bfitr )d\bfitr , EHar =
1

2

\int 
\BbbR 3

VHar\rho (\bfitr )d\bfitr ,

Exc =

\int 
\BbbR 3

\epsilon xc\rho (\bfitr )d\bfitr , Enuc =

M\sum 
j=1

M\sum 
k=j+1

ZjZk

| \bfitR j  - \bfitR k| 
.

Note that Enuc is a constant for the given system.
The ground state of the given system can be obtained from solving either the

Kohn--Sher equation (1.1) or the total energy minimization problem (1.2). In order to
numerically solve the continuous problem, we consider the finite element discretiza-
tion.

2.2. Finite element discretization. In practical simulations, a bounded poly-
hedral domain \Omega \subset \BbbR 3 serves as the computational domain. Thus the variational
form of the Kohn--Sham equation (1.1) on \Omega can be formulated as follows: Find
(\varepsilon l, \psi l) \in \BbbR \times H1

0 (\Omega ), l = 1, 2, . . . , p, such that

(2.5)

\left\{       
\int 
\Omega 

\varphi \^H\psi ld\bfitr = \varepsilon l

\int 
\Omega 

\psi l\varphi d\bfitr \forall \varphi \in H1
0 (\Omega ),\int 

\Omega 

\psi l\psi l\prime d\bfitr = \delta ll\prime , l\prime = 1, 2, . . . , p,

where H1
0 (\Omega ) = \{ \varphi \in H1(\Omega ) : \varphi | \partial \Omega = 0\} and H1(\Omega ) is a standard Sobolev space.

To build a high quality finite element space to approximate the solution of (2.5)
in all-electron calculations, the singularities stemming from the Coulomb potential in
(2.2) should be prudently treated. In this work, we adopt a radial mesh generation
strategy to resolve the difficulty brought by the singularities; see subsection 4.2 for
details.

Assume that the linear finite element space Vh \subset H1
0 (\Omega ) is constructed on the

bounded domain \Omega partitioned by \scrT = \{ \scrT K ,K = 1, 2, . . . , Nele\} , whereNele represents
the total number of elements of \scrT . Several commonly used notations in Vh are defined
here. The basis functions are denoted by \varphi i, i = 1, . . . , n, where n is the dimension
of Vh and the set of basis functions is denoted by \scrN = (\varphi 1, . . . , \varphi n)

\top . We construct
the matrix of basis function \scrB with \scrB i,j = \varphi i\varphi j then the symmetric mass matrix B \in 
\BbbS \BbbR n\times n can be obtained from Bi,j =

\int 
\Omega 
\scrB i,jd\bfitr . Furthermore, a sequence of matrices

\{ G(l) \in \BbbS \BbbR n\times n, l = 1, . . . , n\} with the entries (G(l))i,j =
\int 
\Omega 
\scrB i,j\varphi ld\bfitr are introduced.

The discretized Laplacian L \in \BbbS \BbbR n\times n on Vh is defined as Li,j =
\int 
\Omega 
\nabla \varphi j \cdot \nabla \varphi id\bfitr .

D
ow

nl
oa

de
d 

06
/2

2/
22

 to
 5

9.
38

.3
2.

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B728 BIN GAO, GUANGHUI HU, YANG KUANG, AND XIN LIU

On the finite element space Vh, the discretized variation form of (2.5) becomes
the following: Find (\varepsilon hl , \psi 

h
l ) \in \BbbR \times Vh, l = 1, 2, . . . , p, such that

(2.6)

\left\{       
\int 
\Omega 

\varphi \^H\psi h
l d\bfitr = \varepsilon l

\int 
\Omega 

\psi h
l \varphi d\bfitr \forall \varphi \in Vh,\int 

\Omega 

\psi h
l \psi 

h
l\prime d\bfitr = \delta ll\prime , l\prime = 1, 2, . . . , p.

We express the lth wavefunction as \psi h
l =

\sum n
i=1Xi,l\varphi i = X\top 

l \scrN , where X \in \BbbR n\times p and
Xi,l stands for the ith degree of freedom of \psi h

l . Then the electron density can be
rewritten as

\rho (\bfitr ) =

p\sum 
l=1

(X\top 
l \scrN )(X\top 

l \scrN ) =

p\sum 
l=1

X\top 
l \scrB Xl = tr(X\top \scrB X).

Note that the Hartree potential VHar in (2.3) is also the solution to the Poisson
equation  - \nabla 2VHar = 4\pi \rho (\bfitr ). We denote the discretized Hartree potential by U(X) \in 
\BbbR n such that VHar = U(X)\top \scrN . After the finite element discretization on the Poisson
equation, U is calculated from the linear system LU(X) = 4\pi (tr(X\top G(1)X), . . . ,

tr(X\top G(n)X))\top . In practical simulations, this linear system is solved by an efficient
algebraic multigrid method [11].

Due to the arbitrariness of \varphi in (2.6), we can choose \varphi = \varphi i, i = 1, . . . , n. In view
of the above expressions, finding the solution of the discretized variational form (2.6)
turns into solving the generalized nonlinear eigenvalue problem:

(2.7)

\Biggl\{ 
H(X)X = BX\Xi ,

X\top BX = Ip,

where \Xi = Diag(\varepsilon h1 , . . . , \varepsilon 
h
p) and H(X) \in \BbbS \BbbR n\times n is the discretized Hamiltonian matrix

which can be formulated from (2.1) as

(2.8) H(X) =
1

2
L+Mext +MHar(X) +Mxc(X).

The matrices Mext,MHar(X),Mxc(X) \in \BbbR n\times n are defined as

(Mext)i,j =

\int 
\Omega 

Vext\scrB i,jd\bfitr , (MHar)i,j =

\int 
\Omega 

VHar\scrB i,jd\bfitr , (Mxc)i,j =

\int 
\Omega 

Vxc\scrB i,jd\bfitr .

We now represent the total energy (2.4) in the discretized form:

Ekinetic(X) =
1

2

p\sum 
l=1

\int 
\Omega 

\nabla \psi l \cdot \nabla \psi ld\bfitr =
1

2

p\sum 
l=1

\int 
\Omega 

X\top 
l \nabla \scrN \cdot X\top 

l \nabla \scrN d\bfitr =
1

2
tr(X\top LX),

Eext(X) =

\int 
\Omega 

Vext\rho (\bfitr )d\bfitr =

\int 
\Omega 

Vexttr(X
\top \scrB X)d\bfitr = tr(X\top MextX),

EHar(X) =
1

2

\int 
\Omega 

VHar\rho (\bfitr )d\bfitr =
1

2

\int 
\Omega 

VHartr(X
\top \scrB X)d\bfitr =

1

2
tr(X\top MHar(X)X),

Exc(X) =

\int 
\Omega 

\epsilon xc\rho (\bfitr )d\bfitr =

\int 
\Omega 

\epsilon xctr(X
\top \scrB X)d\bfitr = tr(X\top Mexc(X)X),
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where the matrix Mexc(X) in the last formula is defined as (Mexc)i,j =
\int 
\Omega 
\varepsilon xc\scrB i,jd\bfitr .

Thus the discretized form of the minimization problem (1.2) is assembled as

(2.9)
min

X\in \BbbR n\times p
EKS(X) = Ekinetic(X) + Eext(X) + EHar(X) + Exc(X) + Enuc

s. t. X\top BX = Ip.

The generalized orthogonality constraints in (2.9) are known as the generalized Stiefel
manifold [1], denoted by \scrS B

n,p := \{ X \in \BbbR n\times p : X\top BX = Ip\} . Note that the gradient
of EKS(X) satisfies \nabla EKS(X) = 2H(X)X, while we scale it as \nabla EKS(X) = H(X)X
to be consistent with the convention.

3. Parallelizable algorithms. In this section, we concentrate on the solving
part in Figure 1. Namely, the discretized total energy minimization problem (2.9) is
considered. We first state its optimality condition. Then a one-step gradient-descent
update is proposed for solving (2.9), and its global convergence result is established.
We also develop an upgraded algorithm based on the columnwise block minimization
with preconditioning.

The discretized total energy minimization problem (2.9) is a nonconvex con-
strained optimization problem due to the orthogonality constraints. We state its
first-order optimality condition as follows.

Definition 3.1. Given X \in \BbbR n\times p, we call X a first-order stationary point of
(2.9) if the following condition

(3.1)

\biggl\{ 
tr(Z\top \nabla EKS(X)) \geq 0,

X\top BX = Ip

holds for any Z \in \scrT \scrS B
n,p

(X), where \scrT \scrS B
n,p

(X) := \{ Z \in \BbbR n\times p : Z\top BX +X\top BZ = 0\} 
is the tangent space of \scrS B

n,p at X.

Following from [18, Lemma 2.2], it can be proved that the condition (3.1) is
equivalent to

(3.2)

\left\{   (In  - BXX\top )\nabla EKS(X) = 0,
X\top \nabla EKS(X) = \nabla EKS(X)\top X,

X\top BX = Ip.

In fact, the second equality of (3.2) is automatically satisfied since \nabla EKS(X) =
H(X)X and the Hamiltonian H(X) is symmetric. Moreover, the condition (3.2)
can be further reformulated as

(3.3)

\biggl\{ 
\nabla EKS(X) = BX\Lambda ,
X\top BX = Ip,

where the symmetric matrix \Lambda \in \BbbS \BbbR p\times p can be regarded as the Lagrangian multipliers
of the generalized orthogonality constraints. Multiplying the first equation from the
left by X\top , it follows that \Lambda is given by the closed-form expression at any first-order
stationary point:

(3.4) \Lambda = X\top \nabla EKS(X) = X\top H(X)X.

3.1. Main iteration: One-step gradient-descent update. The unconstrain-
ed method proposed in [19] has been proven to be efficient for solving large scale
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B730 BIN GAO, GUANGHUI HU, YANG KUANG, AND XIN LIU

orthogonality constrained optimization problems. Briefly, the iterates are not required
to be orthogonal. Meanwhile, the feasibility1 violation, defined by \| X\top BX  - I\| F,
gradually decreases to zero until the method converges. This type of method enables
us to get rid of the unscalable computation for preserving constraints. In addition,
it provides an opportunity to employ the multicore machines and thus gain better
scalability from parallel computing.

The algorithm in [19] originally aims to solve the problem with orthogonality
constraints (X\top X = I), and in this subsection, we extend it to the general case
(X\top BX = I) which is not a trivial task. The skeleton of this algorithm is based on
the augmented Lagrangian method (ALM) [42]. Let Xk be the current iterate; the
classical ALM has two major steps in each iteration:

(1) Update the Lagrangian multipliers \Lambda k.
(2) Minimize the ALM subproblem to obtain Xk+1,

(3.5)

min
X\in \BbbR n\times p

\scrL \beta (X,\Lambda 
k) := EKS(X) - 1

2

\bigl\langle 
\Lambda k, X\top BX  - Ip

\bigr\rangle 
+
\beta 

4

\bigm\| \bigm\| X\top BX  - Ip
\bigm\| \bigm\| 2
F
,

where \scrL \beta (X,\Lambda 
k) defines the augmented Lagrangian function of problem (2.9)

and \beta > 0 is the penalty parameter.
This framework avoids being confronted with the generalized orthogonality constraints.
Next, we discuss how to update these two steps efficiently.

For step (1), in view of the fact (3.4), we suggest the following update of La-
grangian multipliers:

(3.6) \Lambda k = Xk\top H(Xk)Xk.

Because of the symmetry of the Hamiltonian H(Xk), the above update provides
symmetric multipliers \Lambda k, which allows us to waive the symmetrization step in [19].

On the other side, the ALM subproblem in step (2) is an unconstrained optimiza-
tion problem, and various methods can be applied to derive different updates. Instead
of solving the subproblem to a certain preset precision, our strategy is to provide an
approximate solution by an explicit formulation. We first introduce a proximal lin-
earized approximation [7] to substitute the augmented Lagrangian function in (3.5).
Specifically, we consider the subproblem

(3.7) min
X\in \BbbR n\times p

\bigl\langle 
\nabla X\scrL \beta (X

k,\Lambda k), X  - Xk
\bigr\rangle 
+
\eta k
2

\bigm\| \bigm\| X  - Xk
\bigm\| \bigm\| 2
F
.

The parameter \eta k measures the dominance of the proximal term. The solution of this
quadratic subproblem is expressed by an explicit form:

Xk+1 = Xk  - 1

\eta k
\nabla X\scrL \beta (X

k,\Lambda k)

= Xk  - 1

\eta k

\Bigl( 
H(Xk)Xk  - BXkXk\top H(Xk)Xk + \beta BXk(Xk\top BXk  - Ip)

\Bigr) 
,(3.8)

where the last step is owing to the update formula (3.6). It implies that this modified
ALM update is nothing but a vanilla gradient-descent step, and 1/\eta k specifies the
stepsize.

1The word ``feasibility"" is often used in constrained optimization; see [42]. Here, it means ``or-
thogonality.""
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Now we turn back to the solving part in Figure 1. By using the one-step gradient-
descent update (3.8) in the main iteration, we fulfill a solving part for KSDFT. The
complete algorithm is described in Algorithm 1.

Algorithm 1: Proximal linearized augmented Lagrangian algorithm
(PLAM)

\bfone Input: discretization with n \in \BbbN and B \in \BbbS \BbbR n\times n; tolerance \epsilon > 0; initial
guess X0 \in \BbbR n\times p; Set k := 0.

\bftwo while
\bigm\| \bigm\| \bigm\| (In  - BXkXk\top )H(Xk)Xk

\bigm\| \bigm\| \bigm\| 
F
+
\bigm\| \bigm\| \bigm\| Xk\top BXk  - Ip

\bigm\| \bigm\| \bigm\| 
F
> \epsilon do

\bfthree Compute the Hamiltonian H(Xk) by (2.8).

\bffour Update the variable Xk+1 by (3.8).
\bffive Update the parameters \eta k and \beta ; Set k := k + 1.

\bfsix Output: Xk.

Once the preprocessing and discretization are finished, the number of degrees
of freedom n and the matrix B are fixed. Meanwhile, the initial guess X0 can be
generated by any popular strategy in KSDFT. In view of the condition (3.2), we
notice that line 2 (the stopping criteria) in Algorithm 1 is sufficient to check the first-
order optimality. Lines 3--5 are the main iterations in Figure 1. Since the evaluation
of the stopping criterion in line 2 is involved in (3.8), it is a byproduct of lines 3--4
and thus does not require additional costs except for F-norm calculations. In practice,
the BLAS3 operations X\top H(X)X and X\top BX in (3.8) can be efficiently computed
since B and H are sparse. The gradient-descent update in line 4 is also the BLAS3
operation. As a result, those calculations in KSDFT can be well assembled in a
parallel way. The choices of parameters will be discussed in subsection 4.4. To sum
up, the algorithm PLAM can be conveniently implemented since there is no matrix
decomposition or eigensolver. It completely consists of BLAS operations. Therefore,
the algorithm PLAM is open to be parallelized. Note that the SCF method can also
be described by the framework Figure 1, and the only distinction between SCF and
PLAM is the main iteration. Specifically, SCF replaces lines 4--5 with solving a linear
eigenvalue problem from (2.7), and in practice one or at most a few iterations in the
eigensolver are enough to get to the next SCF iteration [40].

3.2. Convergence analysis. The global convergence of the plain PLAM for
orthogonality constraints (X\top X = I) has been studied in [19]. Next, we consider the
generalized case, i.e., X\top BX = I. It can be proved that the existing results are still
applicable for Algorithm 1.

A natural idea to investigate the generalized orthogonality constraints is trans-
forming it into the standard case. Since B is symmetric positive definite, there exists a
symmetric positive definite matrix G \in \BbbR n\times n satisfying B = G2. By taking Y = GX,
problem (2.9) is equivalent to

(3.9)
min

Y \in \BbbR n\times p
g(Y ) := EKS(G

 - 1Y )

s.t. Y \top Y = Ip.

Thus the augmented Lagrangian function of (3.9) is defined as

\~\scrL \beta (Y, \~\Lambda ) = g(Y ) - 1

2
\langle \~\Lambda , Y \top Y  - Ip\rangle +

\beta 

4
| | Y \top Y  - Ip| | 2F.
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The next lemma shows that the transform Y = GX does not change the stationary
points of problems.

Lemma 3.2. (i) X\ast is a first-order stationary point of problem (2.9) if and only
if Y \ast = GX\ast is also a first-order stationary point of problem (3.9).

(ii) X\ast is a first-order stationary point of ALM subproblem minX\in \BbbR n\times p \scrL \beta (X,\Lambda 
\ast )

with \Lambda \ast = sym(\nabla EKS(X
\ast )\top X\ast ) if and only if Y \ast = GX\ast is also a first-order station-

ary point of ALM subproblem minY \in \BbbR n\times p \~\scrL \beta (Y, \~\Lambda 
\ast ) with \~\Lambda \ast = sym(\nabla g(Y \ast )\top Y \ast ).

Proof. (i) Let Y \ast = GX\ast ; it can be verified that

(In  - Y \ast Y \ast \top )\nabla g(Y \ast ) = G - 1(In  - BX\ast X\ast \top )\nabla EKS(X
\ast ),

\nabla g(Y \ast )\top Y \ast = \nabla EKS(X
\ast )\top X\ast ,

Y \ast \top Y \ast  - Ip = X\ast \top BX\ast  - Ip.

Together with (3.2), we can conclude that problems (2.9) and (3.9) share the same
first-order stationary points.

(ii) Let Y \ast = GX\ast . Similarly, it can be verified that

\~\Lambda \ast = sym(\nabla g(Y \ast )\top Y \ast ) = sym(\nabla EKS(X
\ast )\top X\ast ) = \Lambda \ast ,

\nabla Y
\~\scrL \beta (Y

\ast , \~\Lambda \ast ) = G - 1\nabla X\scrL \beta (X
\ast ,\Lambda \ast ).

These equalities lead to the desired equivalence.

In view of Lemma 3.2 and letting Y = GX, the algorithm for problem (2.9) can
be translated into an adaptation for (3.9). Next, we consider using PLAM to solve
problem (3.9). Recall that there are two major steps in the construction of PLAM:

(1) For the multiplier update, we continue with the explicit update (3.6), i.e.,

\~\Lambda k = sym(\nabla g(Y k)\top Y k).

(2) We construct the subproblem with respect to Y ,

(3.10) min
Y \in \BbbR n\times p

\Bigl\langle 
\nabla Y

\~\scrL \beta (Y, \~\Lambda 
k), Y  - Y k

\Bigr\rangle 
B
+
\eta k
2

\bigm\| \bigm\| Y  - Y k
\bigm\| \bigm\| 2
F
,

where the inner product is defined as
\bigl\langle 
Y, \=Y

\bigr\rangle 
B
:= tr(Y \top B \=Y ).

Indeed, this subproblem has the closed-form solution

Y k+1 = Y k  - 1

\eta k
B\nabla Y

\~\scrL \beta (Y, \~\Lambda 
k)

= Y k  - 1

\eta k
B
\Bigl( 
\nabla g(Y k) - Y k\Psi (\nabla g(Y k)\top Y k) + \beta Y k(Y k\top Y k  - Ip)

\Bigr) 
.(3.11)

Using Y = GX and the expression of \~\Lambda k, it follows that the X-update (3.8) can
be exactly recovered from (3.11). In other words, the algorithm PLAM for the X-
problem (2.9) is proved to be equivalent to its adaptation for the Y -problem (3.9).
Whereas the proximal linearized approximation in (3.10) differs from what we used
in [19], the sketch of the convergence analysis is nearly the same. Therefore, the
convergence results for PLAM can be accordingly migrated from [19].

Finally, we present the global convergence of PLAM without proofs. Interested
readers are referred to [19] for a comprehensive understanding, such as the worst-case
complexity and local convergence rate.
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Assumption 3.3. EKS(X) is twice differentiable.

Assumption 3.4. For a given X0 \in \BbbR n\times p, we say it is a qualified initial guess if
there exists \sigma \in (0, 1) such that

\sigma min(X
0) \geq \sigma , 0 < | | X0\top BX0  - Ip| | F \leq 1 - \sigma 2.

Theorem 3.5. Let \{ Xk\} be the iterate sequence generated by Algorithm 1 ini-
tialized from X0 satisfying Assumption 3.3 and Assumption 3.4. Suppose that the
parameters \beta and \eta k (k = 1, . . . ) are sufficiently large and, in particular, the sequence
\{ \eta k\} is upper bounded. Then the sequence \{ Xk\} has at least one cluster point, any of
which is a first-order stationary point of problem (2.9).

3.3. An upgraded version of PLAM. According to the numerical reports
in [19], the plain PLAM performs well in most problems, whereas its behavior is
sensitive to the parameters \beta and \eta k. In practice, it is always troublesome to tune
these parameters as PLAM performs identically on different problems. Even worse,
we cannot guarantee the boundedness of iterate sequences without restrictions on
parameters.

Consequently, [19] suggests a columnwise block minimization for PLAM to over-
come these limitations. In light of its motivation, we similarly impose the redundant
columnwise constraints on the subproblem (3.7) and obtain the subproblem:

(3.12)
min

X\in \BbbR n\times p

\bigl\langle 
\nabla X\scrL \beta (X

k,\Lambda k), X  - Xk
\bigr\rangle 
+ \eta k

2

\bigm\| \bigm\| X  - Xk
\bigm\| \bigm\| 2
F

s. t. Diag(X\top BX) = I.

Notice that the subproblem (3.12) is columnwise separable. Thus, for the ith column
(i = 1, . . . , p), we can construct a subproblem with an extra constraint as follows:

(3.13)
min
x\in \BbbR n

\nabla Xi\scrL \beta (X
k,\Lambda k)\top (x - Xk

i ) +
\eta k

2

\bigm\| \bigm\| x - Xk
i

\bigm\| \bigm\| 2
2

s. t. x\top Bx = 1,

where Xi denotes the ith column of X. The redundant constraint is for restricting
the iterate sequence to a compact set and hence making it bounded. The subproblem
(3.13) has the closed-form solution

(3.14) Xk+1
i =

Xk
i  - 1

\eta k
\nabla Xi

\scrL \beta (X
k,\Lambda k)\bigm\| \bigm\| \bigm\| Xk

i  - 1
\eta k
\nabla Xi

\scrL \beta (Xk,\Lambda k)
\bigm\| \bigm\| \bigm\| 
B

,

where \| x\| B :=
\surd 
x\top Bx is a norm for any symmetric positive definite matrix B.

Accordingly, the Lagrangian multipliers of Xk can be similarly developed based on
the new subproblem (3.12). Specifically, we construct an update for the Lagrangian
multipliers as follows:

(3.15) \Lambda k := Xk\top H(Xk)\top Xk +\Theta 
\Bigl( 
Xk\top \nabla XL\beta (X

k, Xk\top H(Xk)\top Xk)
\Bigr) 
,

where \Theta (\cdot ) = Diag(diag(\cdot )). In view of these formulations, an upgraded version of
PLAM is listed in Algorithm 2 and called PCAL.

Note that the update (3.15) for Lagrangian multipliers in PCAL is different from
(3.6) in PLAM. When the redundant constraints, \| Xi\| B = 1 (i = 1, . . . , p), are
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Algorithm 2: Parallelizable columnwise block minimization for PLAM
(PCAL)

\bfone Input: triangulation with n \in \BbbN and B \in \BbbS \BbbR n\times n; tolerance \epsilon > 0; initial

guess X0 \in \scrS B
n,p; Set k := 0.

\bftwo while
\bigm\| \bigm\| \bigm\| (In  - BXkXk\top )H(Xk)Xk

\bigm\| \bigm\| \bigm\| 
F
+

\bigm\| \bigm\| \bigm\| Xk\top BXk  - Ip

\bigm\| \bigm\| \bigm\| 
F
> \epsilon do

\bfthree Compute the Hamiltonian H(Xk) by (2.8).
\bffour Compute the Lagrangian multipliers by (3.15).
\bffive for i = 1, . . . , p do

\bfsix Update Xk+1
i by (3.14).

\bfseven Update Xk+1 = [Xk+1
1 , . . . , Xk+1

p ].

\bfeight Update the parameters \eta k and \beta ; Set k := k + 1.

\bfnine Output: Xk.

imposed, the corresponding optimality condition changes simultaneously. Specifically,
problem (2.9) with redundant constraints has the first-order optimality condition as
follows:

(3.16)

\biggl\{ 
\nabla EKS(X) = BX\Lambda +BXD,
X\top BX = Ip.

The matrix D \in \BbbR p\times p is diagonal and denotes the multipliers for extra constraints.
Following a similar derivation of (3.3), it can be verified that \Lambda in (3.16) achieves
the closed-form expression (3.15) at any first-order stationary point. Notice that the
main calculation of PCAL is a sequence of gradient-descent steps with normalization.
These for-loop computations are independent and hence can be executed in a parallel
fashion. To sum up, the upgraded version of PLAM still enjoys the benefit of parallel
computing.

In scientific computing, preconditioning is typically used to accelerate iterative
algorithms. In [4], a preconditioner for the eigenvalue problem of SCF iteration has
been proposed. It has the form of T = 1

2L - \lambda B, where 1
2L is the discretized kinetic

operator defined in (2.9) and \lambda is an approximated eigenvalue. In view of the optimal-
ity condition (3.3), the update of Lagrangian multipliers (3.6) in PLAM can be viewed

as the approximation of the eigenvalues. Thus, we choose \Lambda k
ii = (Xk\top H(Xk)Xk)ii to

construct a preconditioner for the proposed algorithm:

(3.17) T k
(i) =

\biggl\{ 
1
2L - \Lambda k

iiB if \Lambda k
ii < 0,

I otherwise
for i = 1, . . . , p.

Consequently, the one-step gradient-descent update (3.8) in PLAM is preconditioned
as

Xk+1
i = Xk

i  - 1

\eta k

\Bigl( 
T k
(i)

\Bigr)  - 1

\nabla Xi
\scrL \beta (X

k,\Lambda k) for i = 1, . . . , p,

where the preconditioned gradient can be assembled by solving p linear systems. In
practice, we can use the algebraic multigrid method [11] to solve the linear systems,
and we find that 5 or fewer iteration steps are enough to obtain a quality precondi-
tioner. As a result, the cost of the preconditioning process contributes only a small
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ORTHOGONALIZATION-FREE FRAMEWORK FOR KSDFT B735

(a) PLAM for He, \beta = 15 (b) PCAL for He, \beta = 1

Fig. 2. The performance of the preconditioner (3.17) for a helium (He) atom example with
n = 1606, p = 1.

part to the total cost of the algorithm. Nevertheless, the parallel scalability of multi-
grid methods may be limited. In order to achieve efficient large scale calculations, it
is crucial to implement this preconditioning in a sufficiently well scaling parallel way.
Note that PCAL is compatible with this type of preconditioning providing that \Lambda k is
selected from (3.15). The parallelizable structure of PLAM and PCAL is still main-
tained as the preconditioning is conducted columnwise. A test in Figure 2 verifies the
effectiveness of the preconditioner (3.17) for both algorithms, where substationarity
is computed by line 2 in Algorithm 1.

4. Implementation details. In this section, we introduce the implementation
details of the framework (Figure 1) in solving the ground state. The quantum sys-
tems examined in this paper are introduced. In addition, several numerical issues in
the simulations are discussed. In view of Figure 2, we observe that PCAL behaves
more efficiently and robustly than PLAM; thus we focus on PCAL in the following
tests.

All the simulations are performed on a workstation with two Intel(R) Xeon(R)
Processors Silver 4110 (at 2.10GHz\times 8, 12M cache) and 384GB of RAM, and the total
number of cores is 16. The software is the C++ library AFEABIC [4] under Ubuntu
18.10.

4.1. Testing problems. A number of atoms and molecules are simulated to
illustrate the effectiveness and high scalability of the presented algorithm. The scale
of testing systems, i.e., the number of orbitals p, is ranging from 1 to 1152. In the
formulation of problem (1.2), the exchange-correlation potential Vxc and exchange-
correlation potential energy \epsilon xc per particle are obtained from the package Libxc [39].
Specifically, the exchange energy functional Ex is the Slater \rho 1/3 functional

Ex =  - 3

4

\biggl( 
3

\pi 

\biggr) 1/3

\rho 1/3,

and the correlation functional Ec from [44] is used which takes the form

Ec (rs) =

\biggl\{ 
 - 0.1423/

\bigl( 
1 + 1.0529

\surd 
rs + 0.3334rs

\bigr) 
, rs \geqslant 1;

0.0311 log rs  - 0.048 + 0.002rs log rs  - 0.0116rs, rs < 1,

where rs = (3/(4\pi \rho ))1/3 is defined as the radius of a sphere containing one electron.
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Table 1
Charge number Zj of the nucleus.

H He Li C N O

Zj 1 2 3 6 7 8

The model equations for the various numerical examples are only different in the
external potential term Vext and precisely in the charge numbers and positions of the
nuclei. The charge of a certain nucleus used in numerical experiments is listed in
Table 1. The nuclei positions for small molecules are obtained from the calculated
geometry part of the Computational Chemistry Comparison and Benchmark Data-
base [27] and for carbon nanotubes from [16]. In summary, the electronic structures
He (1), LiH (2), CH4 (5), H2O (5), C6H6 (21), C12H10N2 (48) and carbon nanotube
C384 (1152) are tested, where the number in the bracket stands for the number of
orbitals p in the associated system.

In practice, we evaluate the values for substationarity, feasibility violation, and
the total energy of each example during the simulations. kkt = \| H(X)X  - BX\Lambda \| F,
fea =

\bigm\| \bigm\| X\top BX  - I
\bigm\| \bigm\| 
F
, and the total energy EKS is computed from (2.4). When the

summation of kkt and fea is small enough, i.e., the stopping criterion

kkt+ fea

kkt0
< tol

is satisfied, we terminate the algorithm. Here, kkt0 is the initial substationarity, and
tol denotes the tolerance and is chosen to be 10 - 8 unless specifically stated. The
relationship between the error of ground state energy and the tolerance is discussed
in subsection 5.1.

4.2. Preprocessing and discretization: Mesh and initial guess genera-
tion. Once we determine the computational domain, a space discretization is gen-
erated for the ground state calculation. To resolve the singularities in the external
potential term, a nonuniform mesh for the partition of the computational domain is
introduced to obtain high accuracy with least effort. Specifically, a global mesh size
function based on the external potential is adopted to generate the nonuniform mesh
[32]. Within the linear finite element framework, to capture the 1/r decay in the
external potential, the mesh size function locally behaving as r6/5 for small r can be
derived, where r represents the distance to the nucleus. Then we can construct the
mesh size function h(\bfitr ) at the discretized point \bfitr as in [32]:

(4.1) h(\bfitr ) = min
\Bigl\{ 
\gamma 1Z

 - 2
5

1 r
6
5
1 , . . . , \gamma 1Z

 - 2
5

M r
6
5

M , \gamma 2

\Bigr\} 
,

where rj = | \bfitr  - \bfitR j | represents the distance to the jth nucleus, \gamma 1 controls the resolu-
tion of the mesh, and \gamma 2 is the largest allowed mesh size. Note that (4.1) implies that
the closer to the nucleus, the smaller the mesh size, i.e., the denser the mesh grid,
which is as desired. Moreover, the distribution of the mesh grid around the nucleus
with larger charge is also denser than that around the nucleus with a smaller charge.
This can be verified from Figure 3 which shows a radial mesh example for the water
molecule (H2O). Remark that once the parameters \gamma 1 and \gamma 2 are fixed, the number
of mesh grids will increase and the calculations become costly as the atomic number
increases. Adaptive finite element methods or using higher order finite elements can
mitigate the problem effectively, but this is out of the scope of this paper.
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Fig. 3. Left: the three dimensional mesh for molecule H2O using the mesh size function (4.1)
with \gamma 1 = 0.15, \gamma 2 = 8. Middle: the mesh around the oxygen nucleus ( - 0.217, 0, 0) in X-Y plane
[ - 1.217, - 0.217]\times [0, 1], on which the element shapes are kept. Right: the mesh around the hydrogen
nucleus (0.866, 1.509, 0) in X-Y plane [0.866, 1.866]\times [1.509, 2.509]. Generated by the software Gmsh
v3.0.6 [21].
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Fig. 4. Energy difference with respect to the number of Dofs of He and CH4 (in Hartree unit).
natom is the number of atoms. The reference value Eref =  - 2.834826 Ha for helium is calculated
from NWChem with the aug-cc-pv6z basis set. The reference value Eref =  - 40.121849 Ha for methane
is calculated from NWChem with the aug-cc-pv5z basis set.

In order to verify the accuracy of the finite element discretization, we calculate
the ground state energy on different meshes generated by adjusting the parameters
in (4.1). The reference value is generated from a widely used electronic structure
calculation software, NWChem [52]. The results are listed in Figure 4. From the figure
we can find that it takes around 2.5 \times 104 degrees of freedom (Dof) for the helium
example to achieve 10 - 3 Ha accuracy per atom (Ha is the energy unit Hartree), and
it takes 1.5\times 105 Dofs for the methane example to achieve such accuracy. Moreover,
we observe that most of the tested examples in this paper can be produced at such
an accuracy. Hence, in the following experiments, we do not report the accuracy and
mainly focus on the studies of convergence and scalability.

It is worth noting that the proposed algorithm is able to accept a random initial
guess, which shows its robustness. In the following comparison, we choose the same

randomly generated initial guess, X0 \in \BbbR n\times p satisfying X0\top BX0 = I, for different
methods. Given a random matrix V \in \BbbR n\times p from the pseudorandom number gen-
erator, X0 is generated by the Cholesky-based Gram--Schmidt technique [20], i.e.,
V = X0R, where R \in \BbbR p\times p is an upper triangular matrix. Nevertheless, one can
always benefit from better initial approximations in practice (e.g., [40]), and hence,
comparisons of timings and/or iterations to convergence using random initial guesses,
as in the present work, may be different from the practice.
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Table 2
Eigenvalues and energy for the example CH4. The relative error is computed between PCAL

and NWChem.

\lambda 0 \lambda 1 \lambda 2 \lambda 3 \lambda 4 EKS

SCF -9.7582 -0.6493 -0.3731 -0.3731 -0.3731 -40.12066
PCAL + postprocessing -9.7582 -0.6493 -0.3731 -0.3731 -0.3731 -40.12066

NWChem -9.7609 -0.6221 -0.3474 -0.3474 -0.3474 -40.12185

Relative error 3\times 10 - 4 4\times 10 - 2 7\times 10 - 2 7\times 10 - 2 7\times 10 - 2 3\times 10 - 5

4.3. Postprocessing: Eigenvalue evaluation in the last step. In view of
the presented unconstrained methods, it is sufficient to output results such that X
satisfies the orthogonality constraint X\top BX = I. However, if we want to extract
the desired wavefunctions from the eigenvectors of the generalized eigenvalue problem
(2.7) or the other physical quantities based on the eigenvalues, we need to introduce
a postprocessing. This is due to the fact that X only provides an orthogonal basis of
the desired eigenspace rather than the eigenvectors.

This can be implemented by solving a small p\times p eigenvalue problem, (X\top HX) \~X =
\lambda \~X, with the Rayleigh--Ritz procedure to get the eigenvalues \lambda i, i = 1, . . . , p, and up-
datingX asX = X \~X to get the wavefunctions. Note that this procedure is called only
for one time in the algorithm and it is of size p\times p. Consequently, its computational
cost can be ignored compared to solving the optimization problem.

To verify the effectiveness of the postprocedure, we compute the eigenvalues of the
Kohn--Sham equation of the CH4 system on the radial mesh with n = 151786, p = 5
for SCF and PCAL. Moreover, we compare the converged results with the reference
values obtained from the package NWChem [52] using the basis set aug-cc-pv5z . The
computational domain for this example is set as [ - 20, 20]3 atomic unit (a.u.), and
the results are listed in Table 2. When the postprocedure is imposed, the eigenvalues
from PCAL are well ordered and agree with eigenvalues from SCF. In addition, we
find that the smallest eigenvalue in PCAL matches NWChem at a 3 \times 10 - 4 accuracy
and the largest eigenvalue matches NWChem at a 7\times 10 - 2 accuracy.

It is worth noting that in the practical simulations, the postprocedure step will
be imposed as the final step of PCAL.

4.4. Choices of parameters. There are two major parameters in the algorithm
PCAL. In view of Figure 2, the penalty parameter \beta = 1 works well for PCAL, and
hence 1 is set as the default value of \beta in PCAL. Next, we investigate the proximal
parameter \eta k, whose reciprocal is the stepsize for the gradient-descent step in Algo-
rithm 2. As suggested in [19], the Barzilai--Borwein (BB) strategy [5] is an efficient
way to produce the stepsize:

\eta BB1
k :=

\bigm| \bigm| \bigl\langle Sk - 1, Y k - 1
\bigr\rangle \bigm| \bigm| 

\langle Sk - 1, Sk - 1\rangle or \eta BB2
k :=

\bigl\langle 
Y k - 1, Y k - 1

\bigr\rangle 
| \langle Sk - 1, Y k - 1\rangle | ,

where Sk = Xk  - Xk - 1, Y k = \nabla X\scrL \beta (X
k,\Lambda k)  - \nabla X\scrL \beta (X

k - 1,\Lambda k - 1). It has other
variations such as the alternating Barzilai--Borwein (ABB) strategy [13]:

\eta ABB1
k :=

\biggl\{ 
\eta BB1
k for odd k,
\eta BB2
k for even k

or \eta ABB2
k :=

\biggl\{ 
\eta BB2
k for odd k,
\eta BB1
k for even k.

We test PCAL with four choices of the parameter \eta k on several testing problems. The
number of iterations to achieve convergence is recorded in Table 3. The notation ``-""
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Table 3
Number of iterations with different proximal parameters.

He LiH CH4 H2O C6H6

BB1 409 - - - -
BB2 46 54 75 60 144

ABB1 86 90 129 180 291
ABB2 75 74 90 119 256

represents that the stopping criterion has not been reached after 1000 iterations. This
table reveals that PCAL with \eta BB2

k behaves robustly and has the best performance on
number of iterations. As a result, we choose \eta BB2

k as our default proximal parameter
in the practical simulations.

5. Numerical examples. In this section, we numerically investigate the per-
formance and parallel efficiency of the algorithm PCAL in all-electron calculations
under the presented framework.

We test the SCF method and a QR-based manifold optimization method (MOp-
tQR) which can be applied to the KSDFT [57]. All these methods are able to fulfill
the solving part in the framework described in Figure 1. They are different in the
main iteration: SCF solves a linear eigenvalue problem; PCAL produces a colum-
nwise gradient-descent update; MOptQR searches along the Riemannian antigradi-
ent and projects the step onto the manifold by QR factorization. We choose the
locally optimized block preconditioned conjugate gradient method [30] as the lin-
ear eigenvalue solver in SCF. The tolerance for the residual of each eigenfunction,
i.e., \| HXi  - \lambda iBXi\| 2, is set as 10 - 8, and the number of maximum allowed itera-
tions is 10; the tolerance for solving linear systems in the Hartree potential is set as
10 - 8; the tolerance for preconditioning is set as 10 - 6. Moreover, an Anderson mixing
scheme is adopted for SCF using at most 5 adjacent results. In both the SCF method
and MOptQR, the orthogonalization process is implemented by the Cholesky-based
Gram--Schmidt technique [20], which is shown to be more efficient than commonly
used Gram--Schmidt procedures.

In the serial setting, the leading order of computational costs is \scrO (np2) among
these methods. The reason is that BLAS3 operations, such as X\top (BX), dominate
the computing, while the function evaluation does not have a crucial impact on the
cost due to the sparsity of discretized Hamiltonian H and mass matrix B. In the
parallel setting, one challenge is to develop an efficiently parallelizable method for
the orthogonalization process in SCF and MOptQR methods whose complexity is
\scrO (p3). There are some success efforts on resolving this issue; e.g., see [40]. Instead,
PCAL is orthogonalization-free and completely consists of BLAS3 operations and thus
benefits a lot from parallel computing. These claims can be verified in the following
experiments.

5.1. Ground state calculations. In this subsection, we compare PCAL with
SCF and MOptQR in all-electron calculations of a list of atoms and molecules under
the serial setting. In order to demonstrate the effectiveness and ability of PCAL, the
following experiments are divided into two classes. For all the systems, the compu-
tational domain is set to be [ - 20, 20]3a.u. The mesh size function (4.1) is applied to
generate the nonuniform mesh for each example. Note that the parameters in (4.1)
are chosen as \gamma 1 = 0.15, \gamma 2 = 8 for C6H6 and C12H10N2, and \gamma 1 = 0.125, \gamma 2 = 8 for
the others. The preconditioner (3.17) is used in all the methods.

D
ow

nl
oa

de
d 

06
/2

2/
22

 to
 5

9.
38

.3
2.

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B740 BIN GAO, GUANGHUI HU, YANG KUANG, AND XIN LIU

Table 4
The results in Kohn--Sham total energy minimization.

Solver EKS kkt Niter fea EKS kkt Niter fea

He, n = 34481, p = 1 LiH, n = 63725, p = 2

SCF -2.86809 2.17 - 8 31 4.13 - 15 -7.98190 5.48 - 8 29 3.19 - 14

MOptQR -2.86808 3.56 - 8 36 3.55 - 15 -7.98190 1.36 - 7 70 2.70 - 15

PCAL -2.86808 5.99 - 9 46 1.62 - 15 -7.98190 1.25 - 7 54 2.24 - 15

CH4, n = 141189, p = 5 H2O, n = 149616, p = 5

SCF -40.23775 4.92 - 7 25 1.91 - 14 -75.83672 1.25 - 7 27 5.41 - 14

MOptQR -40.23775 1.24 - 7 93 2.67 - 14 -75.83672 1.48 - 7 74 2.45 - 14

PCAL -40.23775 5.66 - 6 75 1.59 - 14 -75.83672 1.33 - 7 60 4.82 - 14

C6H6, n = 241939, p = 21 C12H10N2, n = 522149, p = 48

SCF -231.05824 1.76 - 7 28 7.69 - 14 -571.60648 1.39 - 8 34 2.27 - 14

MOptQR -231.05824 3.60 - 7 269 5.14 - 14 -571.60648 7.30 - 8 501 1.63 - 13

PCAL -231.05824 3.71 - 7 144 7.35 - 14 -571.60648 5.37 - 8 148 2.29 - 13

The PCAL method is compared with SCF and MOptQR on different systems.
The detailed numerical results are listed in Table 4 and Figure 5. We observe from
Table 4 that (1) the total energy EKS obtained by PCAL agrees with SCF and MOp-
tQR; (2) the number of iterations ``Niter"" in PCAL is less than MOptQR. Note that
the iteration numbers of SCF are always the smallest. This is due to the fact that
the inner iterations, i.e., solving the linear eigenvalue problem, are required in each
SCF iteration. The convergence results for PCAL are demonstrated in Figure 5. The
first column displays the isosurface of the electron density; the last three columns
present the convergence history of energy, substationarity, and feasibility violation,
respectively. We observe that the feasibility violation of PCAL gradually decreases
until it converges. Note that the postprocessing is not shown in this figure. In the
helium example, the feasibility violation is close to the machine accuracy since the
normalization procedure is equivalent to the orthogonalization procedure in the case
of p = 1.

In addition, in order to investigate the varying behavior of the error in the ground
state energy corresponding to the choice of the stopping criterion and tolerance in
PCAL, we produce the results in Figure 6 for the methane and benzene molecules.
We can find that the smaller tolerance, the smaller error in the ground state energy,
which meets our expectation.

5.2. Scalability. In this subsection, we investigate the parallel efficiency of
PCAL. We examine the scalability of PCAL in the parallel setting on a workstation
with two AMD EPYC 7H12 processors (at 2.42GHz\times 64, 64M cache) and 1024GB of
RAM, and the total number of cores is 128. The testing molecule is C384 which has
1152 occupied orbitals. The number of mesh grids n is set to be 380233. We run the
code on different numbers of cores \{ 4, 8, 16, 32, 64, 128\} . The corresponding speedup
factor is defined as

speedup-factor (m) =
wall-clock time for 4-core run

wall-clock time for a m-core run
.

The results are presented in Figure 7, from which we observe that the speedup factor
of PCAL is close to the ideal one. However, MOptQR has low scalability, and its
speedup factor increases slowly.
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Fig. 5. Convergence history of PCAL for He, LiH, CH4, H2O, C6H6, C12H10N2 (from top to
bottom). The left column displays the isosurface of each molecule. x-axis for the right 3 columns
stands for the iteration step.
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Fig. 6. The error of the ground state energy with respect to the different tolerance in PCAL
for CH4 and C6H6 molecules. Eref is obtained from NWChem.

(a) Structure

(b) Isosurface (c) Speedup factor

Fig. 7. Example C384 with n = 380233, p = 1152.

6. Conclusion. Based on the finite element method and the PCAL algorithm,
a scalable approach is proposed in this paper for the ground state solution of a given
quantum system. To resolve the singularity introduced from the all-electron model,
a radial mesh is generated according to the structure of the system; then the opti-
mization problem is discretized in the associated finite element space. To avoid the
efficiency bottleneck for large scale systems, i.e., the orthogonalization of those or-
bitals, the original PCAL method is extended and applied in this paper for solving
the discretized optimization problem. A novel preconditioner is designed in the ex-
tended PCAL method, which generally accelerates the convergence in the simulations.

Comprehensive numerical experiments are implemented for different molecules.
The converged results of the proposed method are verified by comparing with a
state-of-the-art package, NWChem. The effectiveness of the proposed method is well
demonstrated by the comparison among the proposed method, the SCF method, and
the MOptQR method in serial computing. Meanwhile, the robustness of the proposed
method is fully demonstrated by its insensitivity to the initial guess and the algorithm
parameters.
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One of the main features of the method proposed in this work is its high scalability,
which is attractive for applying our method potentially on large systems. Although
from the numerical experiments the effectiveness of the method has been observed
successfully, there is room left for further improving the numerical efficiency to en-
hance its competitiveness relative to existing SCF codes: (i) methods such as higher
order finite element methods, adaptive mesh methods, and efficient message passing
interface parallel implementation would be considered in our method, and results to-
wards numerical efficiency will be reported in our forthcoming works; (ii) given the
limited parallel scalability of multigrid methods, a sufficiently well scaling parallel im-
plementation of the multigrid preconditioner will be a key issue to efficient large-scale
calculations in practice.

Acknowledgments. We are grateful to the referees for insightful comments and
suggestions which helped to improve the readability and quality of this work.

REFERENCES

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds,
Princeton University Press, Princeton, NJ, 2008, https://doi.org/10.1515/9781400830244.

[2] R. Ahlrichs, M. B\"ar, M. H\"aser, H. Horn, and C. K\"olmel, Electronic structure calculations
on workstation computers: The program system turbomole, Chem. Phys. Lett., 162 (1989),
pp. 165--169, https://doi.org/10.1016/0009-2614(89)85118-8.

[3] R. Alizadegan, K. J. Hsia, and T. Martinez, A divide and conquer real space finite-element
Hartree--Fock method, J. Chem. Phys., 132 (2010), 034101, https://doi.org/10.1063/1.
3290949.

[4] G. Bao, G. Hu, and D. Liu, An h-adaptive finite element solver for the calculations of the
electronic structures, J. Comput. Phys., 231 (2012), pp. 4967--4979, https://doi.org/10.
1016/j.jcp.2012.04.002.

[5] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal.,
8 (1988), pp. 141--148, https://doi.org/10.1093/imanum/8.1.141.

[6] P. Batcho, Computational method for general multicenter electronic structure calculations,
Phys. Rev. E, 61 (2000), p. 7169, https://doi.org/10.1103/PhysRevE.61.7169.

[7] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for
nonconvex and nonsmooth problems, Math. Program., 146 (2014), pp. 459--494, https:
//doi.org/10.1007/s10107-013-0701-9.

[8] D. R. Bowler and T. Miyazaki, \scrO (N) methods in electronic structure calculations, Rep.
Progr. Phys., 75 (2012), p. 036503, https://doi.org/10.1088/0034-4885/75/3/036503.

[9] E. J. Bylaska, M. Holst, and J. H. Weare, Adaptive finite element method for solving
the exact Kohn--Sham equation of density functional theory, J. Chem. Theory Comput., 5
(2009), pp. 937--948, https://doi.org/10.1021/ct800350j.

[10] H. Chen, X. Dai, X. Gong, L. He, and A. Zhou, Adaptive finite element approximations for
Kohn--Sham models, Multiscale Model. Simul., 12 (2014), pp. 1828--1869, https://doi.org/
10.1137/130916096.

[11] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
McCormick, G. N. Miranda, and J. W. Ruge, Robustness and scalability of alge-
braic multigrid, SIAM J. Sci. Comput., 21 (2000), pp. 1886--1908, https://doi.org/10.1137/
S1064827598339402.

[12] O. Cohen, L. Kronik, and A. Brandt, Locally refined multigrid solution of the all-electron
Kohn--Sham equation, J. Chem. Theory Comput., 9 (2013), pp. 4744--4760, https://doi.
org/10.1021/ct400479u.

[13] Y.-H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming, Numer. Math., 100 (2005), pp. 21--47, https://doi.
org/10.1007/s00211-004-0569-y.

[14] D. Davydov, T. D. Young, and P. Steinmann, On the adaptive finite element analysis of
the Kohn--Sham equations: Methods, algorithms, and implementation, Internat J. Numer.
Methods Engrg., 106 (2016), pp. 863--888, https://doi.org/10.1002/nme.5140.

[15] The Elk Code, http://elk.sourceforge.net/.
[16] J. T. Frey and D. J. Doren, TubeGen 3.4, 2011, http://turin.nss.udel.edu/research/

tubegenonline.html (accessed 2019-11-01).

D
ow

nl
oa

de
d 

06
/2

2/
22

 to
 5

9.
38

.3
2.

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1515/9781400830244
https://doi.org/10.1016/0009-2614(89)85118-8
https://doi.org/10.1063/1.3290949
https://doi.org/10.1063/1.3290949
https://doi.org/10.1016/j.jcp.2012.04.002
https://doi.org/10.1016/j.jcp.2012.04.002
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1103/PhysRevE.61.7169
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1088/0034-4885/75/3/036503
https://doi.org/10.1021/ct800350j
https://doi.org/10.1137/130916096
https://doi.org/10.1137/130916096
https://doi.org/10.1137/S1064827598339402
https://doi.org/10.1137/S1064827598339402
https://doi.org/10.1021/ct400479u
https://doi.org/10.1021/ct400479u
https://doi.org/10.1007/s00211-004-0569-y
https://doi.org/10.1007/s00211-004-0569-y
https://doi.org/10.1002/nme.5140
http://elk.sourceforge.net/
http://turin.nss.udel.edu/research/tubegenonline.html
http://turin.nss.udel.edu/research/tubegenonline.html


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B744 BIN GAO, GUANGHUI HU, YANG KUANG, AND XIN LIU

[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 16 Revision B.01, 2016.
Gaussian Inc. Wallingford CT, https://gaussian.com/dft/.

[18] B. Gao, X. Liu, X. Chen, and Y.-x. Yuan, A new first-order algorithmic framework for
optimization problems with orthogonality constraints, SIAM J. Optim., 28 (2018), pp. 302--
332, https://doi.org/10.1137/16M1098759.

[19] B. Gao, X. Liu, and Y.-x. Yuan, Parallelizable algorithms for optimization problems with
orthogonality constraints, SIAM J. Sci. Comput., 41 (2019), pp. A1949--A1983, https://
doi.org/10.1137/18M1221679.

[20] L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Cal-
iste, O. Zilberberg, M. Rayson, A. Bergman, et al., Daubechies wavelets as a basis
set for density functional pseudopotential calculations, J. Chem. Phys., 129 (2008), 014109,
https://doi.org/10.1063/1.2949547.

[21] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in
pre-and post-processing facilities, Internat J. Numer. Methods Engrg., 79 (2009), pp. 1309--
1331, https://doi.org/10.1002/nme.2579.

[22] P. Giannozzi, S. Baroni, N. Bonini, et al., QUANTUM ESPRESSO: A modular and open-
source software project for quantum simulations of materials, J. phys. Condensed Matter,
21 (2009), 395502, https://doi.org/10.1088/0953-8984/21/39/395502.

[23] X. Gonze, J.-M. Beuken, R. Caracas, et al., First-principles computation of material
properties: The ABINIT software project, Comput. Mater. Sci., 25 (2002), pp. 478--492,
https://doi.org/10.1016/S0927-0256(02)00325-7

[24] J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and
beyond, J. comput. chem., 29 (2008), pp. 2044--2078, https://doi.org/10.1002/jcc.21057

[25] D. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B, 88 (2013),
085117, https://doi.org/10.1103/PhysRevB.88.085117.

[26] W. Huang and R. D. Russell, Adaptive Moving Mesh Methods, Appl. Math. Sci. 174, Springer
Science \& Business Media, New York, 2010, https://doi.org/10.1007/978-1-4419-7916-2.

[27] Johnson, R. D., III, ed. NIST Computational Chemistry Comparison and Benchmark Data-
base, 2006, http://cccbdb.nist.gov/ (accessed 2019-09-10).

[28] B. Kanungo and V. Gavini, Large-scale all-electron density functional theory calculations
using an enriched finite-element basis, Phys. Rev. B, 95 (2017), 035112, https://doi.org/
10.1103/PhysRevB.95.035112.

[29] G. P. Kerker, Efficient iteration scheme for self-consistent pseudopotential calculations, Phys.
Rev. B, 23 (1981), p. 3082, https://doi.org/10.1103/PhysRevB.23.3082.

[30] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517--541,
https://doi.org/10.1137/S1064827500366124.

[31] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects,
Phys. Rev., 140 (1965), p. A1133, https://doi.org/10.1103/PhysRev.140.A1133.

[32] Y. Kuang and G. Hu, On stabilizing and accelerating SCF using ITP in solving Kohn--Sham
equation, Commun. Comput. Phys., 28 (2020), pp. 999--1018, https://doi.org/10.4208/cicp.
OA-2019-0024.

[33] L. Lehtovaara, V. Havu, and M. Puska, All-electron density functional theory and time-
dependent density functional theory with high-order finite elements, J. Chem. Phys, 131
(2009), 054103, https://doi.org/10.1063/1.3176508.

[34] P. R. Levashov, G. V. Sin'ko, N. A. Smirnov, D. V. Minakov, O. P. Shemyakin, and
K. V. Khishchenko, Pseudopotential and full-electron DFT calculations of thermody-
namic properties of electrons in metals and semiempirical equations of state, J. Phys.
Condensed Matter, 22 (2010), 505501, https://doi.org/10.1088/0953-8984/22/50/505501.

[35] L. Lin, J. Lu, and L. Ying, Numerical methods for Kohn--Sham density functional theory,
Acta Numer., 28 (2019), pp. 405--539, https://doi.org/10.1017/S0962492919000047.

[36] X. Liu, X. Wang, Z. Wen, and Y. Yuan, On the convergence of the self-consistent field
iteration in Kohn--Sham density functional theory, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 546--558, https://doi.org/10.1137/130911032.

[37] X. Liu, Z. Wen, X. Wang, M. Ulbrich, and Y. Yuan, On the analysis of the discretized
Kohn--Sham density functional theory, SIAM J. Numer. Anal., 53 (2015), pp. 1758--1785,
https://doi.org/10.1137/140957962.

[38] Y. Maday, h-P finite element approximation for full-potential electronic structure calculations,
Chin. Ann. Math. Ser. B, 35 (2014), pp. 1--24, https://doi.org/10.1007/s11401-013-0819-3.

[39] M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Libxc: A library of exchange and
correlation functionals for density functional theory, Comput. Phys. Commun., 183 (2012),
pp. 2272--2281, https://doi.org/10.1016/j.cpc.2012.05.007.

D
ow

nl
oa

de
d 

06
/2

2/
22

 to
 5

9.
38

.3
2.

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://gaussian.com/dft/.
https://doi.org/10.1137/16M1098759
https://doi.org/10.1137/18M1221679
https://doi.org/10.1137/18M1221679
https://doi.org/10.1063/1.2949547
https://doi.org/10.1002/nme.2579
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1016/S0927-0256(02)00325-7
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1103/PhysRevB.88.085117
https://doi.org/10.1007/978-1-4419-7916-2
http://cccbdb.nist.gov/
https://doi.org/10.1103/PhysRevB.95.035112
https://doi.org/10.1103/PhysRevB.95.035112
https://doi.org/10.1103/PhysRevB.23.3082
https://doi.org/10.1137/S1064827500366124
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.4208/cicp.OA-2019-0024
https://doi.org/10.4208/cicp.OA-2019-0024
https://doi.org/10.1063/1.3176508
https://doi.org/10.1088/0953-8984/22/50/505501
https://doi.org/10.1017/S0962492919000047
https://doi.org/10.1137/130911032
https://doi.org/10.1137/140957962
https://doi.org/10.1007/s11401-013-0819-3
https://doi.org/10.1016/j.cpc.2012.05.007


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ORTHOGONALIZATION-FREE FRAMEWORK FOR KSDFT B745

[40] P. Motamarri, S. Das, S. Rudraraju, K. Ghosh, D. Davydov, and V. Gavini, DFT-FE--
A massively parallel adaptive finite-element code for large-scale density functional theory
calculations, Comput. Phys. Commun., 246 (2020), 106853, https://doi.org/10.1016/j.cpc.
2019.07.016.

[41] P. Motamarri, M. R. Nowak, K. Leiter, J. Knap, and V. Gavini, Higher-order adaptive
finite-element methods for Kohn--Sham density functional theory, J. Comput. Phys., 253
(2013), pp. 308--343, https://doi.org/10.1016/j.jcp.2013.06.042.

[42] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Science \& Business Media,
New York, 2006, https://doi.org/10.1007/978-0-387-40065-5.

[43] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and a. J. Joannopoulos, Itera-
tive minimization techniques for ab initio total-energy calculations: Molecular dynamics
and conjugate gradients, Rev. Modern Phys., 64 (1992), p. 1045, https://doi.org/10.1103/
RevModPhys.64.1045.

[44] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations
for many-electron systems, Phys. Rev. B, 23 (1981), p. 5048, https://doi.org/10.1103/
PhysRevB.23.5048.

[45] W. E. Pickett, Pseudopotential methods in condensed matter applications, Comput. Phys.
Rep., 9 (1989), pp. 115--197, https://doi.org/10.1016/0167-7977(89)90002-6.

[46] N. D. Rufus, B. Kanungo, and V. Gavini, Fast and robust all-electron density functional
theory calculations in solids using orthogonalized enriched finite elements, Phys. Rev. B,
104 (2021), 085112.

[47] V. Schauer and C. Linder, All-electron Kohn--Sham density functional theory on hierarchic
finite element spaces, J. Comput. Phys., 250 (2013), pp. 644--664, https://doi.org/10.1016/
j.jcp.2013.04.020.

[48] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., General atomic and molecular
electronic structure system, J. comput. chem., 14 (1993), pp. 1347--1363, https://doi.org/
10.1002/jcc.540141112

[49] K. Schwarz and P. Blaha, Solid state calculations using WIEN2k, Comput. Mater. Sci., 28
(2003), pp. 259--273, https://doi.org/10.1016/S0927-0256(03)00112-5

[50] P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya, and M. Ortiz, Non-periodic
finite-element formulation of Kohn--Sham density functional theory, J. Mech. Phys. Solids,
58 (2010), pp. 256--280, https://doi.org/10.1016/j.jmps.2009.10.002.

[51] E. Tsuchida and M. Tsukada, Adaptive finite-element method for electronic-structure calcu-
lations, Phys. Rev. B, 54 (1996), p. 7602, https://doi.org/10.1103/PhysRevB.54.7602.

[52] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J. Van Dam,
D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and W.A. De Jong, NWChem: A
comprehensive and scalable open-source solution for large scale molecular simulations,
Comput. Phys. Commun., 181 (2010), pp. 1477--1489, https://doi.org/10.1016/j.cpc.2010.
04.018.

[53] S. R. White, J. W. Wilkins, and M. P. Teter, Finite-element method for electronic struc-
ture, Phys. Rev. B, 39 (1989), p. 5819, https://doi.org/10.1103/PhysRevB.39.5819.

[54] H. Y. Xiao, X. D. Jiang, G. Duan, F. Gao, X. T. Zu, and W. J. Weber, First-principles
calculations of pressure-induced phase transformation in AlN and GaN, Comput. Mater.
Sci., 48 (2010), pp. 768--772, https://doi.org/10.1016/j.commatsci.2010.03.028.

[55] C. Yang, J. C. Meza, and L.-W. Wang, A trust region direct constrained minimization
algorithm for the Kohn--Sham equation, SIAM J. Sci. Comput., 29 (2007), pp. 1854--1875,
https://doi.org/10.1137/060661442.

[56] S. Zhang, A. Lazicki, B. Militzer, L. H. Yang, K. Caspersen, J. A. Gaffney, M. W.
D\"ane, J. E. Pask, W. R. Johnson, A. Sharma, et al., Equation of state of boron nitride
combining computation, modeling, and experiment, Phys. Rev. B, 99 (2019), 165103, https:
//doi.org/10.1103/PhysRevB.99.165103.

[57] X. Zhang, J. Zhu, Z. Wen, and A. Zhou, Gradient type optimization methods for electronic
structure calculations, SIAM J. Sci. Comput., 36 (2014), pp. C265--C289, https://doi.org/
10.1137/130932934.

D
ow

nl
oa

de
d 

06
/2

2/
22

 to
 5

9.
38

.3
2.

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.cpc.2019.07.016
https://doi.org/10.1016/j.cpc.2019.07.016
https://doi.org/10.1016/j.jcp.2013.06.042
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1103/RevModPhys.64.1045
https://doi.org/10.1103/RevModPhys.64.1045
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1016/0167-7977(89)90002-6
https://doi.org/10.1016/j.jcp.2013.04.020
https://doi.org/10.1016/j.jcp.2013.04.020
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1016/S0927-0256(03)00112-5
https://doi.org/10.1016/j.jmps.2009.10.002
https://doi.org/10.1103/PhysRevB.54.7602
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1103/PhysRevB.39.5819
https://doi.org/10.1016/j.commatsci.2010.03.028
https://doi.org/10.1137/060661442
https://doi.org/10.1103/PhysRevB.99.165103
https://doi.org/10.1103/PhysRevB.99.165103
https://doi.org/10.1137/130932934
https://doi.org/10.1137/130932934

	Introduction
	Literature review and challenges
	Contribution
	Notation and organization

	Finite element discretization for KSDFT
	KSDFT
	Finite element discretization

	Parallelizable algorithms
	Main iteration: One-step gradient-descent update
	Convergence analysis
	An upgraded version of PLAM

	Implementation details
	Testing problems
	Preprocessing and discretization: Mesh and initial guess generation
	Postprocessing: Eigenvalue evaluation in the last step
	Choices of parameters

	Numerical examples
	Ground state calculations
	Scalability

	Conclusion
	References

