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The complex Langevin method, a numerical method used to compute the ensemble average with a
complex partition function, often suffers from runaway instability. We study the regularization of the
complex Langevin method via augmenting the action with a stabilization term. Since the regularization
introduces biases to the numerical result, two approaches, named 2R and 3R methods, are introduced to
recover the unbiased result. The 2R method supplements the regularization with regression to estimate the
unregularized ensemble average, and the 3R method reduces the computational cost by coupling the
regularization with a reweighting strategy before regression. Both methods can be generalized to the SU(n)
theory and are assessed from several perspectives. Several numerical experiments in the lattice field theory
are carried out to show the effectiveness of our approaches.
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I. INTRODUCTION

The complex Langevin method is a numerical approach
used to circumvent the numerical sign problem arising in
the computation of ensemble averages with complex
Boltzmann weights. Such issues may appear in the real-
time quantum field theories [1,2], coupled quantum sys-
tems with chemical potentials such as the Hubbard model
[3.4] and the quantum chromodynamics at finite density
[5,6], and also the superstring theory [7,8]. In these
applications, one usually encounters strong oscillations
in high-dimensional functions, leading to significant can-
cellations when integrating the functions. As a result, the
classical Monte Carlo method fails to work as the variance
is large compared to the mean value, and such difficulty is
known as the numerical sign problem [9].

The complex Langevin method, introduced in [10,11],
tries to tame the numerical sign problem by using a
straightforward extension of a classical sampling method
called the Langevin method. The extension allows the
samples to take complex values due to the complex
Boltzmann weights. Unfortunately, the application of the
complex Langevin method had been severely limited for a
long time due to one of its major drawbacks: the method
often diverges or converges to incorrect solutions [12]. The
justification of the method and the understanding of its
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failure were explored in several works [13—16], but the
precise reason for the biased results remained unclear until
recently [17,18]. In general, the failure of the complex
Langevin method is due to the lack of control of excursions
away from the real axis. Many efforts have been made in
the past decade to restrict such excursions. For instance, the
use of adaptive time steps is studied in [19] to avoid
runaway trajectories; the method gauge cooling, which
utilizes the gauge invariance to minimize the distances to
the real axis, is proposed in [20] and has achieved many
applications [21-23]; and the dynamical stabilization is
introduced in [24] and tested in [25]. In the case where the
method converges, the work [26] proposes an approxima-
tion technique to quantify the bias. Other attempts to
improve the complex Langevin method include the cou-
pling with Lefschetz thimbles [27], the deformation tech-
nique [28], etc. We invite the readers to refer to [29,30] for a
comprehensive review of the recent advances.

In general, the complex Langevin method is still a
numerical tool under construction. In this paper, we are
going to carry out a deeper study of the aforementioned
dynamical stabilization. The idea of dynamical stabilization
is to add converging velocity fields to the complex
Langevin equation to restrict the excursion of samples.
Instead of working on the original approach introduced in
[24], we will investigate a slightly improved version
considered in [31], called the method of modified action.
Here we will follow [17] and name this approach as the
“regularization” of the complex Langevin method.
Compared with the original approach, this method is easier
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to be justified theoretically. Our focus will be on possible
modifications upon regularization. These include coupling
regularization with the reweighted complex Langevin
method [32,33] and attempts to recover the unbiased result
using regression. Our study is to be carried out via a deep
look into a motivating example in the U(1) one-link case,
after which the method will be generalized to the SU(n)
theories and applied to several lattice field theories, includ-
ing the 3D XY model [34], the Polyakov model [35], and the
heavy dense QCD (quantum chromodynamics) [20].

The rest of the paper is organized as follows. In Sec. II,
we briefly review the complex Langevin method and its
general theory. In Sec. III, the 2R and 3R methods are
presented for a motivating one-dimensional example in the
U(1) one-link case. Then these methods are generalized
to multidimensional integrals in the U(1) theory in Sec. IV
and to the SU(n) theories in Sec. V. In Sec. VI, the
applications of these methods to several lattice filed
theories are discussed. Finally, the paper ends with some
concluding remarks in Sec. VIL

II. A REVIEW OF THE COMPLEX
LANGEVIN METHOD

Following [20], we use the notation {-} to denote the
discrete field defined on a lattice. For instance, suppose
{¢} is a three-dimensional real scalar lattice field. Then,
{¢} contains a set of variables ¢, € R with x being a three-
dimensional multi-index representing the lattice point. If
the lattice has N points, then {¢} is essentially a vector in
RY. For simplicity, we will also use ¢, k=1,...,N to
denote the components of {¢}. In this section, we will
provide a brief introduction to the complex Langevin
method and its regularization. For introductory purposes,
we will temporarily restrict ourselves to the scalar fields
where ¢, € R or T, where T stands for the torus
T =R mod 2z.

With the notations defined above, we are interested in
computing the following ensemble average:

)= [ ot@hes@atg). z= [ eSaig),
0

where Q = RN or TV. When S({¢}) is real, we can regard
Z as the partition function, so that the integral can be
evaluated by the Langevin method [36]. Specifically, the
Langevin equation associated with (1) is given by

dgr =K ({¢})dt+dw;, K;=-—

Here wy, k=1, ..., N are independent Wiener processes
satisfying dw? = 2dr for each k. The Fokker-Planck equa-
tion of this stochastic process is

Z&ﬁ K P) = Z&pk’ (3)

where P({¢},t) represents the probability distribution of
the field {¢} at time r. If ¢=5®) is integrable and the
stochastic process (2) is ergodic, then P({¢},r) will
converge to the equilibrium distribution e~} as
t - oo0. As a result, we can approximate (1) by

1 N, sample

(0)~ o({o!"}), (4)

Nsample m=1

where {®"}, m =1,. Ngmple are the samples gener-
ated by simulating the Langevm equation (2) and choosing

cI)](C’") = ¢ (T + mAT) for a sufficiently large T and suffi-
ciently long time difference AT.

However, when S({¢}) is complex, the Langevin
method is no longer valid. A possible indicator would
be that the partition function Z is now complex valued. To
handle such complex actions, the complex Langevin
method [11,37] postulates stochastic equations of the same
form as (2) with the trajectories of the process wandering in
the complexified space Q. Here

if Q =RV

ifQ=T1N" )

CN
Q =
“ { (T +iR),

Now we assume that both O(+) and S(-) can be extended to
Q¢ holomorphically. Thus, the stochastic process (2) is
again well defined, and the complex Langevin method
again approximates (O) using (4). Since K;(-) can take
complex values, the field {¢} becomes a complex field,
which can also be represented by two real fields {¢%} and
{¢"} with ¢, = ¢F + ip%. The evolution of these two fields
follows the complex Langevin equation:

(o -
d¢k =

where K is again the partial derivative of S as defined in
(2). The corresponding Fokker-Planck equation for the
probability density function has the form P({¢X}, {¢'}, 1),
which evolves according to

or & < ) 9
-+ =(KRP)+— (KLP )
ot = \op§ 8¢’

K{({g®}. {#"})dt + dwy, K, = —ReK;
Ki({¢"}. {¢'})dt, K! = —ImK,’

ppras
k= la((ﬁf)z
The correctness of the complex Langevin method

requires the following two conditions:
(i) The stochastic process (6) is ergodic.
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(i) The following equation holds:

fim | O{#hP({#"}.{¢'}.0d{e}

—00

1

—5 [ otgne#haig). ®

As mentioned in the introduction, observations indicate
that when the stochastic process is ergodic, the complex
Langevin method may sometimes produce inaccurate
results, which implies the possibility that (8) fails to hold.
This occurs especially when P(-, -, o) decays slowly, and
the details have been studied in [17,38,39]. As a remedy,
the method of dynamical stabilization proposed in [24]
adds an artificial term to the imaginary part of the drift
velocity K to suppress the tail of P. Specifically, in (6), K
is chosen as

Ki({¢}) = =0, 5({}) —iaps(Imgy)", vV k=1,....N,

©)

where r is an odd positive integer and ajg is a positive
parameter balancing the stabilizing effect and the bias
introduced by this regularization. Since (9) is no longer the
derivative of an analytic function, the justification of this
approach remains open.

In this paper, we will focus on another type of regulari-
zation introduced in [17], in which a specific problem is
studied. In the next section, we will conduct a deeper study
of the regularization technique based on this motivating
example and consider its possible extensions.

III. MOTIVATING EXAMPLE—
REGULARIZATION OF COMPLEX
LANGEVIN FOR THE U(1)
ONE-LINK MODEL

We will motivate the use of regularization and dynamic
stabilization by applying our proposed method on the one-
dimensional U(1) one-link model studied in [17,40], where
Q = T. Following [17], we use x to denote the integral
variable. The action is a 2z-periodic function:

S(x) =ifcosx,

with p € RT, and x € T.

A. Regularization of complex Langevin
Inspired from [17], the regularized action for this model
is given by

2 2
Se(x) :S(x)+%:iﬁcosx+% (10)

Direct Regularization with g = 0.5
T T
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FIG. 1. The graph depicting the numerical results and true

values of Im((e™),) against s for # = 0.5.

for any given s > 0. As discussed in [17], for large values
of s, the value of (O) agrees with its corresponding true
value with a modified action. However, a divergence is
observed for values of s close to 0.4 as we attempt to set s
close to 0 to retrieve the true value of (O) with unregu-
larized action. The results are also reproduced in Fig. 1. The
authors have commented that the use of appropriate
regression functions might have by extrapolating the results
from s > 0.4 to obtain a decent estimate at s = 0. We will
thus be following a similar argument while supplementing
it with relevant regression functions with the appropriate
mathematical justification.

Note that due to the presence of the regularizing term, the
periodicity for S(x) in x is destroyed. Therefore, in the
definition of the observable, we will “unroll” the torus T
and change the integral domain to R. Thus, under the
modified action, we can rewrite equations (1) as

(0), =+ / O(x)exp(=S,(W)dx. (1)

Z,

with

Z, = [ exp(=3,(0)e. (12)

Upon complexification, we obtain the complex action

572

77
The corresponding drift terms can be computed as
follows':

S,(z) = S(z) + zeC. (13)

1Following the convention in (2) and in (90), we will represent
K, as the drift term for the scalar field ¢, with regularized
action. However, as in the one-dimensional case, as it is under-
stood that we are only dealing with one field variable (which is
written as x), we will drop the comma that separates x and s and
simply write it as K.
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KR(x,y) = —Re(S(x +1iy)) = —fcosxsinhy — sx, However, this is not immediately clear since we have
p L , N 3 changed the integration domain from [0,27) to R as we
Ki(x.y) = ~Im(S;(x +iy)) = fsinxcoshy —sy.  (14) apply the regularization. Fortunately, the result above still
holds under some mild conditions. To prove the limit (15),
we need the following lemma:
Lemma 3.1. For any m, ff € R,

As for the regularized action, two questions need to be
answered:
(i) What is the relation between the regularized observ-
able (O), and the original observable (O)?
(ii) Can we apply the complex Langevin method to
obtain the correct value of (O),? /
The following two sections will be devoted to the explora- R
tion of their answers.

/ 2
imx ,~iff cos x— szdx_ E an _/)7 U"t’”
b

nez

where J, denotes the Bessel function of the first kind.
1. Correct convergence under regularized action Proof.—Applying the Jacobi-Anger expansion

Note that is natural to expect that the regularized
observable will converge to the original observable as e—izcosd Zin J(=2)e" forall p €R. (16)
the regularizing parameter vanishes: = "

lim (O 0). 15
sil(j)1+< )s =10 (15) to (19), we have

1mx —ificos x— szdx — an _ﬂ / i(n4-m)x— s2dx o an —ﬂ (m+:l)2. 17
e 2 PRRACNES )

nez nez

Here, we have interchanged the infinite sum and the integral, which can be justified using dominated convergence theorem
by computing

N
Z ian (_ 1nx

n=—N

2 2
E an el (n+m)x—s% — %%

n=—N

< 46_5_ (18)

fora given N € Z™ that is large enough, as the finite sum inside the absolute sign tends to e~#<°$* with modulus 1 if (16) is
applied. The resulting upper bound in (18) is clearly integrable on R for a fixed f and s.
Proposition 3.2. For the U(1) one-link model, suppose the observable O(x) is 2z periodic and absolutely continuous on
[0, 27). In addition, if we demand that O is a (1 + a)-Holder class function for some a > 0, then, we have that (15) holds.
Proof—First, we consider the Fourier series expansion of O(x) given by

_ Zomeimx‘ (19)
mezZ

Furthermore, from a standard result in harmonic analysis, we know that the convergence of the infinite series on the right-
hand side of (14) is uniform, which thus implies that the Fourier series on the right can be used to represent O. From here,
we apply Lemma 3.1:

imx n 2r (’ﬂ+sn)2
AO( ) exp(— ZO / exp(— dx—221 Ot (- \/> e (20)

me”zZ meZ nezZ
. . ~ 2, .
/ 0( )CXP dx Zom/ lmxe—lﬂcosxdx — Zom/ elmei”Jn(—ﬂ)e‘”xdx
T mez me”zZ nez
=223 Y "0,y (=P)8y o = 22Y_i"O_, ], (21)
meZ neZ mezZ

where the last equality of (20) is due to Lemma 3.1 and (21) utilizes (16) and the property that J,,(x) = J_,(x) for all integer
n. Here, we note that in (20) and (21), we have swapped the relevant infinite series and integration. This can be justified
using the dominated convergence theorem by considering the following partial sums for any N € N:
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=% + |Ople T < e (ZKC(

E Om eimx—ificos (x)—s%

Ool)- (22)

where {(-) is the Riemann zeta function, and we have used the assumption that O is a (1 4+ a)-Holder class function for
some a > 0. This means that there exists a constant K such that

(23)

Thus, from (22), we can see that the upper bound is clearly integrable on R. Thus, by dominated convergence theorem, the

aforementioned interchange is justified.

Equation (20) implies that
lim 1/ / x)exp(—
s—0"

Sy(x))dx = > i"0_,J,( (24)

nez

For Z, and Z, one can use the same technique to deduce that

A
lim \/—Z, = Jo(=p).
Jm 2z % = ol=h)

It is now clear from (21), (24), and (25) that

N . . 2
M N 1mx ,—1p COS X—85%5-
Climgor Yez Omy/3g Jn €™ e™” Tdx

Z = 2xJy(—P). (25)

s : s
s=07" lim,_, o+ \/%ZS

which concludes the proof.

The result above justifies the regularization of the
action—if s is chosen small and (O), can be correctly
computed by the complex Langevin method, the value (O),
can be regarded as an approximation of (O).

2. Correct numerical convergence for complex
Langevin method

Despite the guarantee for correct convergence given in
Proposition 3.2, numerical results from the complex
Langevin method suggest otherwise. The numerical experi-
ments on the regularized action have been carried out in
[17], and we have repeated the same experiments for
B = 0.5. The results are plotted in Fig. 1 for O(x) = €V,
where we can observe a divergence between the true values
represented by the red curve and the numerical results
represented by the data points. The data points are obtained
via numerical simulations with a fixed time step of Ar =
3 x 107 for values of s closer to 0 and At =1 x 1073 if
otherwise, with each sample obtained after every 2000
steps for a total of 10° samples for each value of
s €{0.05k|0 < k <30,k € Z}.

Zo_m my . (=p) = (0), (26)

mEZ

In view of Proposition 3.2, we can deduce that such
divergence between the true values and the numerical
results must be due to the corresponding complexification
of the Langevin dynamics. It is thus instructive to inves-
tigate the correct values of s in which the numerical results
from our complex Langevin method agree with that from
the original Langevin dynamics. The phenomenon that
the correctness of complex Langevin changes with the
parameter in the action has been observed and explained
in a number of previous works [15,38,39]. In [39], it is
demonstrated in another example that the correctness of
the complex Langevin results can be guaranteed only when
the probability density function is localized, meaning that
for all 7 > 0, the solution of (6) always satisfies y(¢) €
[Y=,Y*] for some Y~ < Y". Our problem has a close
similarity to the example in [39], and it can be expected that
we also require the localization of the y(#) to guarantee
the correctness of complex Langevin. To confine the value
of y(z), we need the imaginary velocity K! to satisfy
KI(x,Y™) > 0 and K%(x,Y") < 0 for all x. Note that the
choice of 0 here is due to the fact that in all simulations of
the complex Langevin dynamics, we will always set the
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initial coordinates to be at the origin. This thus motivates
the following proposition:

Proposition 3.3. For the U(1) one-link model, given a
fixed s >0 and > 0, if s > 1.5094, then there exist
Y™ >0 and Y~ <0 such that

Ki(x,Y*) <0 and Ki(x,Y")>0. (27)

Proof.—We first consider the case for Ki(x,Y") < 0.
For any (x,y) € R?, using the expression from (14), we are
looking to solve the following inequality

K%(x,y) = Bsin(x) cosh(y) — sy < 0 (28)
in the sense that there exists a y = Y > 0 such that for all
x€R, Ki(x,Y") <0.

First, for this to hold for all x, it must thus hold at a point
in which sin x is maximum, that is, it takes the value of 1, as
cosh(y) > 0 forall y € R. We define the new expression of
K! in which we replace sin(x) by 1 as K’. Thus, we are
looking to solve for a region in the parameter space (f3, s)
such that such a Y would be guaranteed. The strategy is as
follows. First, we fix the parameters £ and s and solve for
the minimum value of this function K’ at y, in terms of
and s. Since this minimum value is a function of  and s, we
can in fact find such a region in the parameter space such
that K'(yy) < 0. Thus, since K’ is minimized at y, and is
negative, we then have forall y € [0, Y] with Y = y, that
K'(y) <0 and thus K!(x,y) <0 for all x€R and
y € [0, Y"]. Therefore, we have y as the required Y™ that
we are looking for. To apply this strategy, we first look at
the corresponding function for K’:

K'(y) = Bcosh(y) - sy. (29)
Using standard one-variable optimization techniques, we
see that global minimum is attained at

Yo = sinh™! (%) (30)

Now we demand that the minimum value of K’ be negative:

pcosh(yg) — syg <O. (31)

Inserting (30) into the equation above and letting y = s/,
we can simplify the inequality (31) to

1+ <0, (32)

which can be solved numerically to obtain

¢ 1+()? —y—

x > 1.509, s > 1.5098, (33)
and the proof is thus complete for this case.

For the other case in (27), we can use the same strategy to
obtain the same sufficient condition s > 1.5094, which
completes the proof of the proposition. =

Indeed, as we can see from Fig. 1, for points after
s =0.8~ 1.6 > 1.5094, we can observe that the true
values are coherent with the numerical values obtained.
For s € (0.5,0.7), although the numerical results from
complex Langevin appear to be on the red curve, we
believed that a small systematic bias has occurred.

In view of Propositions 3.2 and 3.3, it seems unlikely that
we can obtain good numerical values of (O) solely with the
use of a regularized action, as seen in Fig. 1. This thus
motivates the following subsection, in which we will
consider the fix of the regularized values.

B. Reweighted complex Langevin method
with regularized action

In this subsection, we will introduce the reweighted
complex Langevin method aimed at obtaining numerical
results for (O),.

In [32], the authors consider the action S: with a
parameter . It then holds for any & and &, that

O(x dx f s Séo x)dx
JO( ) o

Se(x ) ’
J Sg 0 Sy (x)dx

(34)

Both the numerator and the denominator on the right-hand
side can be approximated using the complex Langevin
method with action S (x). By choosing an appropriate &,
one may get a better approximation of (O) as compared to
applying the complex Langevin method directly to the left-
hand side of (34). In our case, the regularized action includes
a regularizing parameter s, in which we know that the true
value could be generated at s = 0. This inspires us to develop
our algorithm according to the following proposition:

Proposition 3.4. The following equality holds for all
s, 80 = 0:

2

O(x) exp (L7
oy, =S T s

59—5)x>
(exp(o32))

This proposition is a direct result of (34) by setting £ to be s.
Thus, from Proposition 3.3, as long as we pick sq > 1.5094
and s > 0, we are guaranteed that the numerical values of two
integrals in the ratio obtained using the complex Langevin
method for the right-hand side of 3.4 have no biases. By
equality (35), we can thus obtain an accurate numerical value
of (0), even for s < 5. Setting s — 0 in (35), we thus have
an accurate numerical value of (O).

Following Proposition 3.4, we carry out numerical
experiments by fixing sy = 0.8 and compute (O), for
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Reweighted One Link Model with g = 0.5,s9 = 0.8
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FIG. 2. The graph depicting the divergence of numerical results
obtained from reweighted complex Langevin method and true
values of Im((e'*),) against s for f = 0.5 due to large standard
errors; —0.25815 represents the true value at s = 0.

s € (0, 1.5). The numerical values were generated using a
fixed time step of At = 1073, with each sample obtained
after every 2000 steps for a total of 107 samples at s, = 0.8.
Values of (O), for s # 0.8 were obtained from this set of
points generated via the equation (35) above. Furthermore,
the corresponding error bars were generated using a M out
of a N naive bootstrap method at each s, with M = 20000
and N = 107, repeated for n = 10000 times. The results
and the estimated error bars are plotted in Fig. 2. Indeed, we
observe that for s around 0.5, we have obtained a better
approximation of (O). However, two worrying phenomena
have also surfaced from this experiment. Namely,
(i) The numerical value of (O), deviates from the true
value when s gets smaller than 0.5.
(i) As s reduces, the estimated standard error start to
grow dramatically from s around 0.4.

Nonetheless, it can be shown that the divergence for (O) is
due to a large standard error, in which the standard error for
(0) grows as the value of s decreases from s, to 0. This thus
provides motivation for the following section, in which the
introduction of a mathematically motivated regression model
aims to obtain an improved numerical estimate for (O).

C. Coupling reweighted complex Langevin method
with regularized action, with regression

As mentioned at the start of this section, an important
question to address would be the choice of the regressors
that we should use to perform regression. Will a simple
polynomial regression work? What would be considered as
appropriate regressors? To answer these questions, we refer
back to Fig. 1. The graph above shows the graph of the true
curve of (O), for O = e with # = 0.5 inred. As observed,
the curve becomes very flat when s is close to zero, which
implies that the higher-order derivatives of Im({e'*) ) might
be 0 at s =0. This is not a fact captured by arbitrary

polynomial regressors. Thus, if such an observation is true,
we would have to turn to other regressors. This motivates
the proposition below.

Proposition 3.5. For the U(1) one-link model with
regularized action, for any observable O satisfying the
conditions in Proposition 3.2 and for any given k € Z™,
we have

dk
@ <0>s|s:0 =0. (36)

Proof.—The proof of this proposition continues from the
proof of Proposition 3.2. From (17), the numerator for (O),
constitutes a sum over m of the expression in (17). The
denominator however, consists of the m = 0 term in (17).
Multiplying both the numerator and the denominator by a
factor of \/1;1, we have that

(m+n)2

(0), = Lmez ez "In(=F)One”>
| Znezin‘ln(—ﬁ)e—%

— fl(s) . (37)

f2(s)

As the given function above is clearly infinitely differ-
entiable, we take the derivative with respect s on both sides
to obtain

d :fll(s)fZ(S)_f/z(S)fl(s)

0), ’ 38
3 0)s 0 (38)
where
2 2
f/l (S) - ]n‘]”(_ﬁ)om <(’/ns_|_2n>> e_(m;r:) )
(n4+m)ez\{0}
2 2
= 2P (:_2) - (39)
nez\{0}

Here, we used Z\{0} since if n or n + m is equals to 0
before differentiating, the corresponding term in the infinite
series is a constant due to the absence of the exponential
factor and disappears upon differentiation. By writing
down (39), we have explicitly swapped the derivative
and the infinite sum. This can be justified using a standard
result in analysis (see Theorem 7.17 in [41]) as follows.
First, we restrict our attention to [0, s,] for s, large enough.’
Then, we will proceed to show that the derivative of the
sequence of partial sums converges uniformly on [0, s,].
Below, we will verify the conditions for f(s), in which a
simpler case will thus hold for f%(s). The uniform con-
vergence can be verified using Weierstrass M test by first
computing

2“Large enough” can be understood in the sense that it is
sufficient for our numerical simulations and that s, > s.
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A 2 m+)12
in‘]n(_ﬁ>0m ((m +2n) ) e_( ZS)
N

(n+m)ez\{0}

K A 4 m+n)2\2 w2
< S (=) ol ) o (M) e

(m+n)ez\{0}
K
< 4(Z|Jn(—ﬁ)|> 3 ((1 o) i
nez mezZ

where we have used the following facts:

(i) Oisa(l + a)-Holder class function for some a > 0,
for Fourier coefficients 0,,, where n # 0, and that
|Oy| is bounded. These two cases are separated by
using the Kronecker delta symbol §,,.

(i) Since m +n#0, then we have m <1 for
all m,n € Z.

(iii) x%e™ < j—z <1 for all x > 0.

(iv) M(B) =352 o [7u(=p)| < +eo for any f5 > 0
With (40), the aforementioned interchange in (39)
is justified. Furthermore, since lim;_q+ f/(s) =0
and lim_ ¢+ f5(s) =0, and limg_ ¢+ f(s) < +oo0 and
lim,_¢+ f>(s) < +oo, then we have 4 (0),|,_, = 0.

Now, assume that (36) has been proven for all k =
1,...,K for some K > 0. By the general Leibniz rule,

K+1 k
FEs =S A6 o), @

3
= ds

Using a similar logic as in (39), we can write down the
higher order derivatives of f| and f, below:

. o _(m+n)2
£0(s) = i), (=B)O(m)hy ,(s)e™ "5 and
(n+m)ez\{0}
" in 2
)= 3 (P (s)e s, (42)
nez\{0}

where both h; ;(s) and hy (s) refer to polynomials in ! of
degree 2k. Note that the interchanges between the infinite

sums and the ¢ and rth order derivatives are still justified.
(m+n)2

This is because, similar to (40), the presence of e™ 2 will
always be able to overwhelm any polynomials in % and
create m for a sufficiently larg y. Taking the limit
s = 0T on both sides of (41), we obtain

) dK+1
o:hwmmﬁﬁﬁmy (43)

s—0"

3This can be observed from its asymptotic behavior for a large
, such that for a fixed g, |J,(—f)| NW (\/_2’\)\11\,

|n

‘ «so,,,|00|) — M(B)RKL( +a) 0] < +o0.  (40)

Thus (36) holds for k = K + 1 since f,(0) # 0. By the
principle of mathematical induction, (36) holds for all
positive integer k. m

Remark.—The proposition above indicates that the
function (O), is not analytic at s = 0, which is essentially
due to the fact that both integrals of O(x) exp(—S,(x)) and
exp(—S,(x)) are not analytic at s = 0. To view the reason in
a more straightforward way, we can write both integrands
as Q(x)exp(—sx?/2), where Q(x) is a 2z-periodic func-
tion, whose Fourier transform is the sum of Dirac delta
functions on integers. When s is small, the Fourier
transform of exp(—sx?/2), which has the form
s71/2exp(—£2/(2s)), is a narrow Gaussian peaks at the
origin. Thus, by taking the convolution, the Fourier trans-
form of Q(x) exp(—sx?/2) can be depicted as a number of
Gaussians centered at all integer frequencies. Since the
parameter s appears as the denominator inside the expo-
nential function, the Fourier transform (and thus the
integral) is obviously nonanalytic with respect to s.

Upon acknowledging the information presented in
Proposition 3.5, we can investigate the structure of (O),
presented in (37). From here, we can consider regressors in
the form of a ratio of sum of exponential functions as
summarized below:

Proposition 3.6. For any observable O satisfying the
conditions as stated in Proposition 3.2, an appropriate
rational representation would be

- 2
_ Zk:O age

00 &2
Zkzo bye™>

Proof.—This follows directly by considering all possible
integer combinations of both the numerator and the
denominator in (37). m

Henceforth, we can use the rational representation in
(44) and consider the following regression model:

(0), (44)

<0>s _ 22/1:0 ake_g_“ = AM(S) ) (45)

1+ 224:1 bke-% By(s)

In the regression model above, the coefficients a; and b,
are obtained by minimizing the objective function:
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asgming,p, [ [4() = F©Bu(s)Pds. (46

min

where s,;, and s, are the lower and upper bounds of s for
which we can obtain the value of (O), via simulation, and
f(s) refers to a certain approximation of (O), for
S € [Smin> Smax)- In our experiments below, f(s) is chosen
as a polynomial of s and is obtained via least squares
approximation.

D. Numerical results
In this subsection, we will attempt to include simulations
and regressions conducted for O(x) = e with = 0.5.
Here, we note that, from [17], the exact value of (e'*) at
p = 0.5 is given by

1,(=0.5i)
1o(=0.51)
First, we will attempt to obtain an estimate for (e'*)

through the use of regularization and regression. Note that
we have shown that for s > 0.8, the numerical values

(ei¥) = =0 —0.25815i.

Direct Regularization using s > 0.4 for 3 = 0.5

—0.05
—0.1F
—0.15+
—0.2}
5025 =
0
= M=2
E  —03f M=3 —
M=4
—0.35} M=5 1
M=6 —
=04 CL Values x ]
—0.25815
—0.45 True 4
. . . . . ! |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

S

FIG. 3.

obtained from the complex Langevin method are accurate.
In addition, as inspired from Fig. 1, we start to see a
divergence between the true curve and the complex
Langevin values at s ~ 0.4. Thus, we will attempt to include
the complex Langevin values for two different cases,
s > 0.4 and s > 0.8, and apply the regression model in
Proposition 3.6 with different values of M for each case.
The numerical values were generated using a fixed time
step of At = 107*, with each sample obtained after every
2000 steps for a total of 10° samples for each value of
s € {0.01k[40 <k <150,k € Z}. Due to fluctuations
present in the raw dataset, we have employed an inter-
polation using a quartic polynomial in s to average out the
fluctuations prior to solving the optimization problem (46).
Here, we note that this is consistent with the original
regression model in Proposition 3.6, in which for s not
close to 0, we do not have an issue with a flat curve as s
approaches 0 and can therefore approximate such as
expression with an appropriate polynomial. The relevant
data points and regression curves are summarized in Fig. 3.

Next, we will illustrate the possible advantage
obtained by reweighting our observables in accordance

Direct Regularization using s > 0.8 for § = 0.5
0 T T T T T T T

—0.1} ]
—0.2} |
03} B
g 7/
L 04 / M=2
E sl / M=3 —— |
: M=4
) / M=5
—0.6 | / M—6 f
/ CL Values B
-0.7F —0.25815 ———
i/ True —
—0.8 I I I I I L I
0 0.2 0.4 0.6 0.8 1 1.2 14

Numerical results obtained by performing the relevant regression on observables via direct regularization. The left plot utilizes

data points for s > 0.4 and the right plot utilizes data points for s > 0.8.

Histogram for One Link Model at s = 0 with sg = 0.8 and 8 = 0.5
900 T T

Realizations from Bootst‘rap

800

Frequency

0.6 0.8

P-values for One Link Model with so = 0.8 and 8 = 0.5

p-vafue
1r Significance Level at 0.05 1
0.8F
£ 06}
§
[=7
0.4}
0.2+
0 :
0 0.2 0.4 0.6 0.8 1 1.2 14

FIG. 4. The figure on the left depicts the histogram of the obtained distribution for O, at s = 0. The figure on the right corresponds to

the corresponding p values obtained for 0 < s < 1.5.
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Reweighted Regression for One Link with 3 = 0.5 and sy = 0.8

-6—
—o01f
—0.15}
—02f
% —0.25}
F -0af Mz
~0.35} nos
—04r CL %ic? —
—045} ~0.25815 ——— |
‘ ‘ ‘ ‘ e —
0 02 04 06 08 1 12 14

S

Tm((e™)5)

Reweighted Regression for One Link with 3 = 0.5 and sy = 0.8
—0.22 T T T T T T

—0.23

—0.24

—0.25

—0.26 |-

—0.27F

—0.28

FIG.5. Numerical results obtained by performing the relevant regression on reweighted observables. The plot on the right enlarges the
behavior of curves of different M for small values of s and values of relevant observable close to —0.25815.

to Proposition 3.4. As observed in Fig. 2, starting from
s = 0.4, the corresponding standard error grows rapidly as
s goes to 0. Thus, this portion of data may not be suitable to
be used in the regression. We would therefore like to
remove part of the information from our dataset. The
criterion for this is based on the p value and will be
described in the following paragraph.

The growth of the standard error as s approaches O can be
explained as follows. First, we label each realization of the
mean of the observable e™* as O; for each iteration of the
bootstrap method. Next, we obtain a histogram for the O;,
as shown in the left diagram of Fig. 4. From there, we can
observe that although the distribution looks somewhat
symmetric and normal, the distribution of the Oi seems
to be concentrated more at its mean. We can support this
with the use of a Kolmogorov-Smirnov test, conducted
against a normal distribution at each value of s. If the p
value at a given s happens to be below 0.05, then we will
reject the null hypothesis that the underlying distribution
for (O), = ('), is normal and concluding that the under-
lying distribution at that value of s is non-normal. Under the
generalized central limit theorem, an instance in which a
mean distribution converges to a non-normal distribution
must correspond to the fact that the underlying population
has an infinite variance. Thus, as seen from the right
diagram of Fig. 4, we will perform regression using points
generated for s > 0.39, which corresponds to values of s
with p value greater than or equals to 0.05. The results are
summarized below.

The numerical results for both methods, direct regression
with regularized action (2R method) and regressing
reweighted observables (3R method),4 are summarized in
Table I. Note that we have excluded the estimates obtained
by the 2R method using data points with s > 0.8 as we can

“The three Rs mentioned here correspond to regularization,
regression, and reweighting. The missing R in the first method
corresponds to regression done without any sort of reweighting.

see from Fig. 3 that the values of Im(e™) predicted for the
given values of M are both inaccurate and imprecise.

We summarize some of the relevant key observations

from Figs. 3-5 and Table I below.

(i) From Table I, for a fixed M > 3, we can see that both
methods are on par in terms of their accuracy in
estimating the value of Im(e™).

(i) However, the matched performance of the 2R
Method for s > 0.4 as mentioned is on top of the
fact that we have used a priori information on the
divergence of the numerical values generated using
our complex Langevin algorithm as in Fig. 1. This
piece of information might not be available for
general U(1) models such as the 3D XY Model.
Alternatively, one might be able to obtain such
information via other methods, such as the analysis
of boundary terms as in [17,26].

(iii) In the absence of a priori information, as mentioned,
the results obtained via the 2R method for s > 0.8
are both inaccurate and imprecise. This can be
already be seen from the right plot in Fig. 3.
Therefore, to get better results using the 2R method,
one may consider including some biased results with
acceptable errors [e.g., (O), with s € (0.4,0.8) in
this example].

(iv) In addition, we can see from Fig. 1 that the true
curve (for Im{e')  as a function of s) diverges from

TABLE L. Estimates of Im(e'*) for various methods at # = 0.5.
Note that the % discrepancy is calculated with respect to the true
value of —0.25815.

Direct Reg s > 0.4 % Reweighted %
M  (Fig. 3; 2R Method) Disp (Fig. 5; 3R Method) Disp
2 —0.265004 2.7 —0.262370 1.6
3 —0.255572 1.0 —0.267792 3.7
4 —0.267196 35 —0.268786 4.1
5 —0.268420 4.0 —0.268468 4.0
6 —0.268089 3.9 —0.268611 4.1
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the numerical value at s ~ 0.4, which is consistent
with our non-normality test as explained for Fig. 4.
As of now, we are not sure if this is a coincidence or
if there are sufficient mathematical grounds to justify
such a phenomenon.

Remark.—In theory, only samples drawn from popula-
tions of infinite variance will give rise to stable distributions
(instead of normal distributions) under the limit of a large
sample size. However, depending on the type of boot-
strapping method used, there are other types of distribution
in which a simple naive bootstrapping method, like the one
we have employed, might fail. Furthermore, as shown in
[42], even for population distributions with infinite pop-
ulation variance that are suitably well behaved, we note that
the resulting distribution might not be that of a stable
distribution, but rather, a random distribution. Nonetheless,
the success of the naive bootstrapping method for large
values of s indicates that we might not face issues that we
will with standard counterexamples to naive bootstrapping
methods, such as the extreme order statistics but, rather, the
issue can be attributed to infinite population variance.

IV. GENERALIZATION TO MULTIDIMENSIONAL
INTEGRALS IN THE U(1) THEORY

In this section, we will attempt to extend the method used
for the U(1) one-link model to integrals on TV, N > 1 with
more general actions. This includes the U(1) lattice field
theory, where N equals the number of links. As in Sec. II, we
will use {¢} to denote the collection of all the N variables
¢1, ..., Py, and each ¢, is a variable in T. The action and the
observable will be denoted by S({¢}) and O({¢}), respec-
tively. To extend the regularization to multidimensional
models, we adopt the uniform regularization in all directions,
that is, the regularized observable (O), is defined by

(0), =+ / o({)

Zs Jry

cow (50D =534 Jan -

Jj=1

ANeprzm

J=1

bl

k=(ki....ky)eZ"

d¢N7 (47)

with Z defined by

z, = A exp (—S({¢})—%jﬁ;¢;)d¢l...d¢M (48)

The extension to multidimensional models is done by
generalizing Propositions 3.2-3.6 whenever possible, giving
the necessary proofs unless a given proposition generalizes
clearly.
We start off by generalizing Proposition 3.2 as follows:
Proposition 4.1. Suppose that both ¢=5U{%}) and
O({¢}) are C* functions on TV. Then it holds that

lim (O), = (0).

s—07"

Remark.—The smoothness of O({¢}) and eSU¢D
guarantees the interchangeability of the infinite sum
and the integrals. Similar to the one-dimensional case
(Proposition 3.2), the C* requirement can be weakened
to a certain Holder class. However, this C* condition is
satisfied in most applications of the complex Langevin
method, due to the analytic extensibility of both functions
to the complexified space.

Proof.—The proof will largely mimic that of
Proposition 3.2. We can write down the multidimensional
Fourier series of O({¢}) and e=5(#}) in the following
form:

o{eh)y= >

m=(my,....my)€ZY

-S{e}) = Z

N

=

A N

prexp (i Z mjc/)j) ) (49)
=

In particular, analogous to Proposition 3.2, the C* regu-
larity allows for the interchange of the relevant infinite sum
and the N-dimensional integral. Thus, it is sufficient to only
consider integrals in the following form:

)exp( ({#)) %jXNj )dqﬁl
B exp( Zk,qs,ﬂ (H eimitis Sv)dcbl -dgpy.

= B ANHelmH i 2d¢1 ~dw,

k=(ki..... k yezV

Brexp (%s;(mj 4 k.,-)2>. (50)

014508-11



ZHENNING CAI, YANG KUANG, and HONG KIAT TAN PHYS. REV. D 105, 014508 (2022)

Here we have again interchanged the summation and the integral, which can be justified by an argument similar to (18)
using the smoothness of e~S{#})_ Thus, we have

(0), =

( )N/ZZO Zﬂkexp< ij;(mj-ij)Z)’ ZS_< )N/Zzﬁkexp< %ikf) (51)

mezN  kezV kezV

from which we can obtain the limit

1 A a
11m+<0> = = Oﬁﬂ_ﬁl. (52)
s=0 ﬂﬁ mezN

It remains to show that the right-hand side of (52) equals (O). To this end, we write (O) as

<0> 271' f-U'N

({p})e”

S({g}) d{¢}

2z)7N [rv e=SUhd{p}

(53)

By definition, it is clear that f; is the (unweighted)5 mean value of ¢=5({#})| which equals the denominator in (53). Since

O({h))e=5(#) —(Zoﬂew)(zﬂﬂem)—Z(Zomﬂk m)Hewf (54)

kezv =1

we see that the right-hand side of (52) is the Fourier
coefficient of the zero-frequency mode in the expansion of
O({¢})eS1U4}), and thus corresponds to the numerator in
(53). We have thus completed the proof. u

Next, we note the range of s() depends largely on the
functional form of S({¢}). Thus, Proposition 3.3 does not
generalize easily. Instead, we will proceed to generalize
Proposition 3.4. However, this is straightforward, as we only
have to replace |x|* with the sum of |¢; |, as elaborated below:

Proposition 4.2. The following equality holds for all
s, 850 > 0:

(O({e}) exp (7 X001 19;17)),
(exp (7 300 19,17,

(O{e})s = = (55)

As the proof is completely analogous to that in Proposition
3.4, we shall skip the proof.

We can also observe a similar phenomenon as
Proposition 3.5 for all possible S({¢}) satisfying the
relevant conditions for uniform convergence of their
corresponding Fourier series. In particular, the following
proposition generalizes this.

’Here, “unweighted” mean of an expression f refers to
Sf(x)d . ) ‘
f,)i(lxd)x, where D is the appropriate domain for
X

<f>unweighled = j‘

consideration. One can compare this expression to the expression
for weighted means as in (47) and (48).

kezV =1 kezV

mezN

Proposition 4.3. Let the action S({¢}) and any observ-
able O satisfying the conditions in Proposition 4.1 be given.
For any given k € Z*, we have

——(0)] =0 (56)

Proof-—As the proof for this proposition is largely
similar to that in Proposition 3.5, we will sketch the key
differences here. From (51), we have (O), = f(s)/f2(s),
where

=> 05 Zﬂkexp< %ZN:m +k;) )

mez"  RezN Jj=1

Zﬁkexp<——§:k~). (57)

kezV

The structure of this function is similar to (37), and we can
use exactly the same approach to prove that all the
derivative at s = 0 vanishes. Here the interchangeability
of the derivative and the series follows the fact that both O

and S are infinitely, so that the coefficients O/’é and f3; decay

faster than 1/ \l;|“ for any a > 0. ]

Based on the expression (57), it is straightforward to
derive the following proposition, which is similar to
Proposition 3.6.
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Proposition 4.4. For any observable O satisfying the
conditions as stated in Proposition 4.1, there exist coef-
ficients a; and by for all k € N such that

YR ae™
Do bie =
Note that a key difference between (57) and (37) is that

the sum over the components ZN—1 does not exist in the
one-link model. In fact, the integer ZN k2 can take any

(0), = (58)

value from 0 to N, so that when N is large, the Zero terms in
both summations in (58) will appear only for a large k. To
accommodate for such cases, we have included all possible
integer coefficients of —zls instead as shown in (58).

In view of the proposition above, an appropriate regres-
sion model is given by

224:0 age E
1 + lel/lzl bke_% .
Note that for any model under the U(1) lattice field theory
framework, similar to the regression model in (45), we can

minimize a similar objective function as described in (46)
to obtain the corresponding regression coefficients.

(0), = (59)

V. EXTENSION TO THE SU(n) THEORY

This section introduces how we can extend results from
the previous sections to the SU(n) theory, and presents
results for the one-dimensional problems. Before we
introduce the regularization method in SU(n) theory, we
will briefly review the complex Langevin method under the
SU(n) gauge theory.

Consider the set {Uy:k = 1,...,N} € [SU(n)]", where
N is the total number of lattice points. Given the action
S({U}), the expectation value for the observable O({U})
is given by

Jisuepy O{U}) exp(=S({U})d{U}
Jsupr exp(=S{UHA{U}

Let w, fora =1,...,n* — 1 be independent Brownian
motions. Upon complexifying the configuration space
[SU(n)]Y to [SL(n,C)]", the complex Langevin method
for SU(n) theory can be described by the complex
stochastic process:

(0) =

(60)

n’—1

AU = = id,[UD ok S({U})dt + Upodw, 4],

a=1

Uy €SL(n.C), k=1,....N, (61)

where o stands for the Stratonovich interpretation of the
stochastic integral and A,, @ = 1, ...,n> — 1 are the infini-
tesimal generators of the SU(n) group satisfying the
orthogonality

tr(Aghy) = 28,5, Yab=1,...n*—1,

and D, ; denotes the left Lie derivative operator defined as

DakS({U}) _ ll_r)%S({fje});S({U})’ (62)

where {U¢} denotes the field with links defined by

l~]§ = exp(iedyd,)U;, 1=1,...,N.

To solve (61), we mimic standard methods and apply the
following scheme to update the links as follows:

U,({j+1 —exp< ZM Do SYAL 41 VA ))Uk,

k=1,...,N, (63)
where U,((j) is the link at time instance ¢, At = t;,; —; is
time step and each 7, ; is normally distributed with mean 0
and variance 2. The scheme is similar to the Euler-
Maruyama method, while the exponential map is applied
to keep the solution from leaving the Lie group.

Below, we will generalize the techniques of regulariza-
tion, reweighting, and regression to the SU(n) group theory.
They will be introduced in the following three subsections.

A. Regularization

To demonstrate how the regularization can be general-
ized to the SU(n) theory, we would like to restate the
method for the U(1) theory in the language of group
theories. Here we regard U(1) as the unit circle on the
complex plane, so that we can establish the one-to-one map
between U € U(1) and x € T by U = exp(ix). Thus, we
can write down the integrals over T as integrals over U(1).
For instance,

Z— A exp(=S(x))dx
_ / exp(—S(—ilog U))dU, (64)
u(1)

where we have assumed that S(-) is periodic with period 2z,
so that the value of S(—ilog U) is unique. In Eq. (64), we
can also consider log U as an element in the Lie algebra of
U(1), i.e., g = iR. When we apply the regularization, an
extra term sx?/2 is added to the action, whose counterpart
should be —s(log U)?/2 if we represent the regularization
term using the variable in U(1). However, since sx?/2 is
no longer periodic with respect to x, the expression
—s(log U)?/2 becomes multivalued, so simply adding this
term to the action will cause ambiguities.

To address this problem, we can rewrite (11) and (12) in
the following form:
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(0), :%L(I)O(—ilog U) Z exp (—S( ilogU) + gz)dU

9ES
s.t. exp(g)=U

. sg>
L= / > exp (=S(—ilogU) +=- |dU. (65)
vy G 2

s.texp(g)=U

Here the summation is taken over all logarithms of U, corresponding to unrolling the torus T to the real axis R. Our
generalization of the regularization to the SU(n) theory will be based on the form of (65).
Formally, for the SU(n) theory, the regularized action can be written as

N
S,({U}) = S(UY) -5 wlllog U, (66)
k=1

where log Uy, is an element in the Lie algebra 81t(n). Here the regularization term is chosen as the trace of the matrix square
since its square root defines a norm on 81 (n). However, the ambiguity again comes from the nonuniqueness of the matrix
logarithm. Therefore, we mimic (65) to write down the regularized observable as

1
A LIS

g1€8u(n)
ZS / §
[SU g1€su(n

s.t. exp(gy )=U1
st exp(g))=U}

N
N
S e (stwp + 33w Jav
gN Esu(n) k=1
s.t.exp(gy)=Upy

Z) exp( (o) g:% gk> (67)

gNESu(n
s.texp(gy)=Un

|
closest to g; such that the limit exists. The value of the limit
is given in the following proposition:

Proposition 5.1. For any U, € SL(n,C), it holds that

Following the idea in Proposition 3.2, it is expected that
when s — 0T, the regularized observable (O), will con-
verge to (O) in (60). We leave the rigorous proof as our
further work and we focus on the implementation of the
regularized method for SU(n) theory in this section. trf(log(e%<U,))? —
To formulate the complex Langevin method for the 11_)m0 p

complexified action (66), we need to first formulate the

Langevin method for real actions. The general idea of
the numerical scheme follows (63), while the derivative of
the action D, ;.S should be replaced with D, ;S defined by

(log Uy)?]

= 2itr(A, log Uy).

Proof.—Since tr(A> — B?) = tr(A + B)(A — B) for any
matrices A and B, we can simplify the limit as follows:

. tr[(log(e%«€U,))? — (log Uy )?
DS, ({U}) = DS UY) i 108 (og U]
5., tr[(log(e*“Uy))> — (log Uy )?] . log(e“U,) —logU
_5?—{% c . (68) :linétr([log(e”ank) +log Uy] og(e™ Uy ~log k),
€—> €
. . . : . log(e"«“Uy) —log Uy

The numerical scheme is fully determined once the Lie = 21<1m0tf log Uy . . (69)
derivative is determined. Meanwhile, the generalization to ‘
the complex action follows naturally as the formula of the ‘ .
numerical scheme is unchanged, and each link U, auto-  Let A} = log(e#«U}) —log Uy and
matically falls into the complexification of SU(n), i.e., the
special linear group SL(n,.C). Below, we will focus on AS, | = [log Uy, AS] = (log U)AS — AS(log Uy,
the computation of (68) with U, € SL(n,C) and resolve .
the complication caused by the multivalued logarithmic i=12... (70)

function.
In (68), g; :=log U, can take any matrix logarithm of
Uy, while log(e%«“U,) must be the matrix logarithm that is

It can be derived from the cyclic property of the matrix trace
that
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tr{(logUp)AL,
i=1.2,.... (71)

According to the differential formula of the exponential
map [43, Theorem 5], we have

+oo (_1)i+1

2

i=1

A¢ = Upte Uy — 14 O(€?)

=ieU' 2, U + O(€?).

Using (71), we can left multiply the above equation by
log U, and then take the trace to obtain

n?—1

21/1

| =tr[(logUy)*AS = (log Uy ) A (log Uy )| =0,

tr[(log Uy)AS] = ietr[(log Uk)Ugl/laUk] + O(e?)

tr(4,log Uy) + O(€?). (72)

Inserting this equation into (69) concludes the proof. m
By this proposition, the drift term (68) becomes

Do iSs({U}) = DasS{U}) —istr(dg log Uy),  (73)

based on which the update of the links (63) becomes

k=1,....N, (74)

U(ﬂrl = exp(

where the underlined term produces a pullback
velocity so that the excursion away from SU(n) can be
restricted.

We now consider the determination of g, = log U,. We
first assume that U, is diagonalizable, i.e., U, = ROR™!
for some R € SL(n,C) and ® = diag(6,, ...,0,). Then

gr = log U, = log(ROR™') = R(log®)R~!. (75)
The nonuniqueness of g, comes from the nonuniqueness
of log®. If E = diag(¢&y,...,&,) is a diagonal matrix

satisfying
exp(&) =0, i=1..n and » &=0, (76)
i—1
then for any K1, ..., K, € Z satistying K; +--- + K, =0,
we have
—(j+1 . S
2V = argmingeena |2 — EY 1.

s.t. E is a Jordan normal form and 3R € C"" such that exp(RE

When j =0, we simply choose E’.,({O) such that the
imaginary parts of all its diagonal elements locate in
[-7, 7). Here, we comment that due to the existence of

the stochastic term, H,(CJ D may be distant from = _,(() Thus,

our strategy does not produce the ‘“correct” choice of
Effrl). However, such a probability decreases exponen-
tially as Ar decreases, which will not affect the order of
accuracy for the numerical method. Note that in this
approach, we need to keep track of the evolution of E,((j ),

D, SYAL —istr(A, IOgU/(())At+77akV ))

exp(E + 2#il") = O, (77)

where ' = diag(K, ..., K,). Hence, the matrix R(E +
27il)R~! is a candidate of g;. Note that here we require
trE = trl' = 0 since g; is required to be an element in
8[(n, C), which contains all traceless n x n matrices. If U,
is nondiagonalizable, then ® will contain Jordan blocks and
E becomes an upper-triangular matrix. Nonetheless, the
relation (77) still holds and still plays the role that leads to
multiple values of matrix logarithms.

To resolve this issue, we would like to determine a

specific 2 for each j and k such that the diagonal of

exp(u,(< J) ) consists of all the eigenvalues of Uy, which will

further determine the matrix logarithm. In order to maintain

the continuity of the dynamics, we choose Z; =D by

minimizing its difference from :,E)

determine _,(j +1)

. In other words, we

via

R = Uit (78)

[
which guarantees that the summations in (67) are taken into
account.

To summarize, we describe the algorithm of the complex
Langevin method for the SU(n) theory below.

Like in the regularized U(1) theory, when the regulari-
zation parameter s is small, the regularized method may
still converge to biased results. Our improvements, includ-
ing reweighting and regularization, will be studied in the
following two subsections.
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B. Reweighting

The idea of reweighting follows from our motivating
example, as in (35). We represent the observable (O), as

(O exp(S;, = S,))

<0>S - <eXp(Ss0 - SS)>SOO , (79)
where
Sy =Sy === ullog Uy]  (80)

k=1

according to the definition (66). To compute the numerator
and the denominator of (79), Algorithm 1 can still be
applied, and the logarithms in (80) can still be found by

using _( /) at each time step [see (78)]. However, when N is

large, the value of §; —S§; in (80) might be a large
positive number if sy > s [note that tr[(log U;)?] < 0].
Consequently, its exponent exp(S,, — ) will be so huge
that it will be difficult to handle using double-precision

floating-point numbers. Therefore, we shift §;, — S by its
average, so that (79) can be computed as
Oexp(S,, —S; — (S5, = Ss)s.))s
<0>s:< p(Ss, (S5 = Ss)s))so (81)
<CXp(SSO - Ss - <Sso - Ss>so)>s0
This requires us to record the values of O and S, — S, for
each sample, so that we can first compute (S, — S;), and

then use the result to evaluate (81). In our tests, the
magnitude of the shifted exponents turns out to be
acceptable after applying such a trick.

C. Regression

For the U(1) theory, the expression we used in the
regression has a fractional form (58), which is derived
based on the Fourier expansion of functions on U(1).
Similarly, for the SU(n) theory, suppose that y,, k=
1,2, ... form an orthonormal set of basis:

PN RS CERN)
Wb dr (- 1)

where |g| =

b )

Vg + g5+ g3, and P;I’ (+) is the associated Legendre function. Here g, g,, g3 can be considered as the
coefficients of the Pauli matrices ¢, 0,, 63 when representing the elements in $1(2). Since tr(c;6;) = 25;;

Algorithm 1.
action.

Complex Langevin method for the regularized

Input: Initial field {U*)}, time step At, total number of time
steps J, number of time steps to reach the invariant
measure J,, number of time steps between two
samples AJ

1 Set j < 0, Ngmpe < 0 and (O0), < 0;
For each k, let Z; be the diagonal matrix with diagonal

elements being the logarithms of the eigenvalues of U (0), and

) — RE/(C())R—I

[ 8]

compute its logarithm log U,(CO
for j < 0 to J do

|  Use the result of log U}, ) {0 evolve the solution by (74);

| if j > J, then

|| {0); < (0), + 0({UU*});

- JO « JO( _-tl)AJ Nsample « Nsample + 1

ffCOmpute 27" for each k according to (78), and find

._(/+l)

LI AW

log Uy (+D) based on the result of &

9 <0>r < > /Nsamplev
Output: (O),

/ v Uy (U)AU = 6. (82)
SU(n)

Then the expression used in the regularization can be
determined by computing

S
U exp [ =tr¢? |dU, k=1,2,
/SU(n)l//k( ) > p<2 g)

g€su(n)
s.t. exp(g)=U

. (83)

For the SU(2) theory, the integral (83) can be calculated
using the isomorphism between SU(2) and the three-sphere
S*. The basis functions y(U) can be chosen as the
generalized spherical harmonics defined on S3, which
are denoted by Y, ., (v.0.¢) with (y,6,¢) being the
hyperspherical coordinates. The precise form of Y, ; ;. can
be found in [44]. To compute the integral, we write (83) as
an integral on the three-dimensional linear space 31(2).
With proper changes of variables, the integral (83) can be
transformed into

L, .
(=) 0% (sinlgl.cos o)
9/ 9V g+ 3B

xp (—s|g|*)dg,dg,dgs.  (84)

ij» we get s instead

of s/2 as the parameter in the exponent of (84), which differs slightly from the U(1) theory. The polynomial QZ(~, ),
I3 > I, > 0 has degree /5, and is defined by the recurrence relations

(L+2)(l5+ 1)
Q(x.y) = 2\/(13 L+ )(+h+2)]

02 (x,y) - \/(13 +2)(b+ L+ 1D)(—b)

L(b=L+1)(5+15+2) Qi (7).
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with the initial condition

L _
Q) =

(205 4 2)!1 xb
2L+ )y

The recurrence relation shows that QZ (x,y) has the form xl2R2 (v), where RZ() is a polynomial of degree /5 — I,.
For the three-dimensional integral (84), one can use spherical coordinates to further simplify it. Upon integrating out the

spherical angles, we obtain

1,/2

L \? : . )
L= {2’5—?2 \ /21§:1< > o7 (sin g)’lRZ (cos g) exp(—sg?)dg, if I, =0 and [, is even,
16243

0,

otherwise.

When [, = 0 and [, is even, we define the polynomial RZ (x) = (1 = x?)k/ 2RZ (x). Then, we have

71'2 21 —|—1 lz 2 +o0 R
Tt = 233, 24ﬂ <12/2) A R}’ (cos g) exp(—sg°)dg,

The integral above is the linear combination of s~/ 2e‘§_.2s-,
k=0,1,...,15. Thus, similar to Propositions 4.1 and 4.2,
we conclude that in the SU(2) theory, the regularized
observable (O), has the form

k
20 akes

— —.
Z;Ti‘é bre™s

This expression can then be used in the regression model
via a truncation of both infinite series.

For the SU(n) theory with n > 2, we have not found a
straightforward way to evaluate the integral (83). Instead,
we conjecture that the form (85) holds for all the SU(n)
theories, and we will use the approximation

(0), (85)

M _k

(0), =~ U (56)

1 + Z k=1 bke 4s
in our regression model when carrying out numerical tests.

Remark.—Although the precise form of (O), remains
unclear, it is reasonable to believe that (O), is also non-
analytic at s = 0 in the SU(n) theory. Similar to the U(1)
theory, both integrals in the definition of (O), [see (67)] can
be written as the integral of Q({U}) exp (3_F_, 5 g1), where
Q({U}) is defined on the compact group [SU(n)]", which
can be decomposed into the linear combination of count-
able discrete “Fourier modes.” Here each “Fourier mode”
can be understood as an eigenfunction of the Laplace-
Beltrami operator on [SU(n)]Y. Meanwhile, when s
approaches zero, the exponential part approaches a con-
stant, meaning that in the frequency space, this function
approaches a Dirac delta function at the zero point. This
implies that s should appear in the denominator inside the

[, =0 and [, is even.

exponential function. In addition, the factor Q({U})
spreads the Dirac-like function of frequency to all the
discrete modes. With this understanding, we think the
postulate (85) for all SU(n) theories is sensible, although it
is possibly up to a scalar multiple in the exponent.

VI. APPLICATIONS IN THE LATTICE
FIELD THEORY

We are now ready to carry out numerical simulations for
the lattice field theories. For the D-dimensional lattice, the
each lattice point is denoted by a periodic multi-index

XEX = (Z/WZ) % - % (Z)Ip,Z),  (87)

where [; refers to the length of the lattice in the (i + 1)®
component of x. For a scalar field {¢}, the variables will be
denoted as ¢,; for a vector field {U}, we denote the
variables using U, ,, where € {0,1,...,D—1}. For
simplicity, we use x £ ji to denote the multi-index that
adds/subtracts the uth component of x by 1. For instance,

x+0= (xo+ L xp, .o, Xp_t)s

x—1=(xp.x1 = 1,....xp_y). (88)
In what follows, three models in the lattice field theory will
be studied. In order to achieve better results from regres-

sion, we will derive more suitable regression models for
specific problems whenever possible.

A. 3D XY model

For the 3D XY model, we have D = 3 and its action
reads
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¢x+f/ - iﬂau,()) ’ (89)

SH{p}) =AY Zcos

x€X v=0

where the field variables ¢, € T, and p is the chemical
potential. For simplicity, we shall work with the assumption
that the length of the lattice / in each dimension to be equal,
thatis [ = [; for i € {0, 1,2}. Note that one can attempt to
generalize some of the arguments to lattices with differing
lattice sizes in each dimension with a somewhat similar
argument. For a scalar field, the size of the lattice, denoted
by N = B3, corresponds to the number of field variables we
will be considering in our integration. When Re u # 0, the
action becomes complex, and the complex Langevin
method is applied to solve this model. This method fails
even for small g in this model [17,34], and its failure was
carefully analyzed in [34], with the effect of the boundary
terms being discussed in [26]. Furthermore, according to
our numerical experiments, the complex Langevin dynam-
ics diverges even for a simple Euler-Maruyama method
without any modifications such as using adaptive time-
stepping algorithms. In addition, to impose the presented
regularization method on this model, we simply add the
regularization term —$  ¢2 with s >0 as discussed
in Sec. IV.

For this model, the complex drift force corresponding to
the variable ¢, upon regularization is given by

oS
K.,=——"
“ 0,

= —=$ D _lsin(

+ Sin(¢x - ¢x—i/ +

¢x - ¢X+f/ - iﬂau,O)

i/’l5u.0)] - S¢x‘ (90)

We will mainly focus on two observables: the action
density

olnZ
op

AT

and the number density

(oo

As part of the general framework for U(1) lattice field
theory, we can expect Propositions 4.1-4.4 to hold. What
remains is to determine an equivalent interval of s depend-
ing on a given f and p such that we are guaranteed correct
convergence. In addition, for this specific model, we are
able to derive a better regression model as compared to the

() = -

¢x - ¢x+ﬁ - 1ﬂ6v0)> (91)

6an

() = xww» 92)

general model in Proposition 4.4. The former is summa-
rized in a proposition that follows.

Proposition 6.1. Let f and pu be given. Let 5, be the
smallest real number such that the following inequality
holds

(¥l +2)Y (no; p) — (7 +2)Y (g o) ™!
—nolog (Y (no;u)) <0, (93)

whereby

n+ = 4(e 1 2) (e 1 2)
2(ekl +2)

Y(n;p) =

Then, if s > 210/, the imaginary part of the field {¢'} is
bounded for any realization of the complex Langevin
dynamics.

Here, by following the notation in (2) and (14), the first
index in the subscript of K, ; represents the drift term for
the corresponding scalar field ¢,, while s in the second
index indicates that this drift term is obtained from a
regularized action.

Proof.—We begin the proof by decomposing the drift
term in (90) as follows:

2
K§s = _ﬁ Z[SIH (¢§ - x+y) cosh (¢x x+1/ /461/,0)
v=0
+ sin (¢F — ¢ ;) cosh (¢ — Pl + b, 0)] = ¢,

2
KL, =—B> [cos (¢ — ¢, ;) sinh (] — ¢, — 5, )
— @R ;) sinh (Bh — P!y + ud,0)] — s
(94)

Following a similar strategy as to Proposition 3.3 butin a
generalized case, we need to show that for s large enough,
the support of the probability density in the imaginary
variables ¢’ is compact. Thus, we do so by first removing
any dependence in {¢®} by finding an upper bound for K%
for a given x € X that holds for all ¢®. An instructive upper
bound for K. ; would be

KL, < ﬂZ (sinh(|@4| + % 5] + |ud,0l)

+ sinh(|¢5| + |

y0|)) _s¢x (95)

Let a be the right-hand side of the inequality above,
which only depends on the imaginary part of the field

variables {¢'}. Note that K% ; can be viewed as a function
on RV, As a generalization to Proposition 3.3, we will need
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to find an N-dimensional object H that contains the 01'igin6
such that, along the boundary of the object OH, we have’

KL, - fi |y <O, 96
B OH

xeX

where {7} represents the outward-oriented unit vector
normal of the surface OH. For this proof, our choice of
H would be an N-dimensional hypercube centered at the
origin with length 2C in each dimension. Here, we reserve
the freedom of choice on C > 0, which would be chosen to
close the proof for this proposition. We note that the
surfaces of this hypercube are (N — 1)-dimensional finite
planes given by

I = {9/} € RVl =

with a total of 2N of such planes, indexed by a sign on its
superscript and x € X corresponding to the imaginary part
of the field variable ¢, in which the value of C is achieved.
Note that since the outward oriented unit vector normal to
[TI£ only has a component in the x direction and that

KL < Kfc s, it is sufficient to show thata({(ﬁh;}) < 0if
¢t =+C and KL ({pl:}) > 0 if ¢L=—C for all x.

Thus, applying the relevant inequalities from (97) for
[T}, we have

+C and Vy#x|pl|<C} (97)

xs|ITr < :BZ Slnh |¢x| + |¢x+v

L/VO|)
v=0

+ sinh(|gx] = |4y | + [, ol)) — s
< P(2sinh(2C + |u|) 4 4sinh(2C)) — sC

- Klllpper (98)

Thus, sz|n+ < 0if Kupper < 0. Thus, for a given f, s, and

U, we can conduct a one variable optimization on C and
deduce that K}, is minimized at C = C, with

¢, log<ﬂ+\/2ﬁ

elﬂ\ +2)(e” el 2)
2(ell +2) ) (%9)

A remark here is that minimization is consistent with the
fact that we can utilize the freedom of choice of C for any
given S, i, and s. Thus, we want to lower the upper bound
of Kupp@r as much as possible so that Kupper < 0 can be
achieved with a smaller value of s. This is analogous to
picking the choice of y, in the U(1) one-link model in

®This condition is necessary since all our complex Langevin
snnulatlons always starts from the origin.

"In the one-link model, the one-dimensional object is the line
segment [Y~, Y] that contains the origin 0, with the boundary
being the points y=Y"andy=Y

Proposition 3.3. Substituting C; to the expression of
Kﬂpper|nj in (98) yields

(e +2)Y ()"
(100)

I<111pper|l'1;r = ﬂ((elﬂl + 2)Y(’7’/’t) -
—nlog(Y (n; 1)),

Thus,

demanding K{,e; < 0 is equivalent to solving the inequal-
ity as described in (93). In other words, we describe the
minimum value in which (93) holds as 7. Thus, this is
equivalent to

where Y(n;p) is as defined in (93) and 1 =3

n= 3 ,3 2 1os
and thus s > 2. Alternatively, we can just choose
s > 2nof. A symmetric and analogous argument holds
for the case of I1; and for all x. This concludes the proof. m

Furthermore, as promised, we will attempt to obtain a
better regression model as compared to that in (58),
summarized in the following proposition:

Proposition 6.2. We consider the 3D XY model for the
action density and the number density observables as
defined in (91) and (92). For both observables, we can
improve the representation of (O), to

>0 age”™s
>0 bke_lf

Proof.—It is obvious that both observables and the action
are C* functions. Thus the derivations in the proof of
Proposition 4.1 work in the 3D XY model. By observing
that the action S and the number density n on a discrete
lattice takes the form of a difference in two neighboring
field variables ¢, — ¢, as compared to individual field
variables, we thus rework some of the steps in (50). For the
3D XY model, with the action given in (89), we can rewrite
the exponentiation of the negative of it as

S{#}) H H B cos(dy—erip—ind, o)

xeX v=

— H H Z [im e o0 ],

xeX v=0meZ

E Zﬁzeizxexk—*{/)‘ s

kek

(0); = (101)

(=ip)]e im(py—cprss)

(102)

where we have again used the Jacobi-Anger expansion (16)
and the resultant Fourier series with its coefficients repre-
sented by f; is analogous to that in the second line of
Eq. (50). Here the range of the summation /C is given as a
proper subset of ZV defined by
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K= {lzezN:ka_o}.

xeX

The appearance of K can be explained as follows. Since the
inner sum represents different Fourier frequency modes for
¢, — ¢, with each satisfying the fact that Y .y k, =0,
and the fact that the product of exponentials is given by the
exponential of the sum of the individual arguments, such a
property is preserved in the resulting Fourier series, and
thus have the given property for K. Here, we note that the
observables n or S follow a similar structure. This thus
implies that, analogous to (51) and (57), we have

(0), = ZL >N Oaprexp (_%Z(’”x + kx)2>7

S mek ke xeX
1
Z,=> prexp <_sz’%)' (103)
EGIC xeX

For every k € ZV, the sum > ex k2 is odd/even if and
only if > cyx k. is odd/even since k2 and k, always share
the same parity. Then for k € K, we know that Sex k2 is
even so that in (103), each exponential term in the series
expansion of Z; has the form exp(—I/s) for some [/ € Z,
where the factor 2 drops off by reduction of the fraction.

8 x 8 x 8 lattice, 5 = 0.2, p = /0.1

0.018
0.016}
0.014}

oo}

= 0010}

§ 0.008}

0.006
0.004
0.002 £

D U= W

M=7
Regularized values e

0.000 . . .
0 0.5 1 1.5 2 2.5 3 3.5 4
s
8 x 8 x 8 lattice, 5 = 0.7, p = v/0.1

0.064 T T T T T

0.062

0.060 -

0.058

Re(u(n).)

M
0.056 ]

0.054 +

3
4
5
6
7

‘ ‘ ‘ Re‘gulariyced valpes K
0 0.5 1 1.5 2 2.5 3 3.5 4

S

, since

The same can be done to the expansion of (O)
m+ ke KC, which leaves with us the expression in (101). m

Remark.—We note that the concept of counting the
parity of k, and m, is inspired by the representation of
the partition function into bonds as proposed by the Worm
algorithm in [45,46].

With reference to the above proposition, the appropriate
regression model is thus given by

M _k
(0), = e (104)

1 + 224:1 bke T
for a given integer M.

We apply the above regression model to two examples
on a 8 x 8 x 8 lattice with parameters f = 0.2,y = \/(ﬂ
and g = 0.7,y = /0.1, respectively, for the two observ-
ables of interest, the number density scaled with the
chemical potential un, and the action density S. Similar
to the U(1) one-link model, we will compare the numerical
results obtained with that from standard methods from
current literature. The results for the 2R method are
summarized in Fig. 6 and Table II.

Here, we summarize some of the key points from Table 11
as follows. First, we note that the range of s used might not
be consistent with what is obtained in Proposition 4.4, s >
218 =2(7.8)(0.2) =3.12 for =02 and pu =01,
while we have included points as close as s = 0.6 in our

8 x 8 x 8 lattice, 3 = 0.2, p = /0.1
-0.05 . T

-0.10F

-0.15}

-0.20+ M=
—~  -0.25} Regularized values
L 030t
£ -0354

-0.40+

-0.45}1

-0.50F

-0.55 .

0 0.5 1 1.5 2 2.5 3 3.5 4
s
8 x 8 x 8 lattice, 3 = 0.7, p = /0.1
-1.60 . T T T
M=3 ——
- M=4 ——
-1.65 M=5
M=6

-1.70+ M=17
> Regularized values o
2 st
T
o~

-1.80F

-1.85}F

-1.90

FIG. 6. Number density (left) and action density (right) for # = 0.2 (top) and 0.7 (bottom) of 3D XY model. M represents the number

of expansion terms used for extrapolation (101).
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TABLE II.  Estimates for Re u(n) and Re(S) using various methods from the current literature and from our 2R method as in Fig. 6.

=02, u=+0.1 =07, u=+0.1
Rey(n) Re(S) Re p(n) Re(S)
Original complex Langevin method from [26] 0.001840 —0.07929 0.04926 —1.5268
Corrected complex Langevin method from [26] 0.0003858 —0.06716 0.04905 —1.5240
Worldline method from [26] 1.5495 x 1077 —0.06230 0.04898 —1.5240
Best for 2R method 0.001641 —0.08791 0.05234 —1.6052
2R method with different values of M
M=3 0.001641 —-0.10397 0.05307 —1.6170
M =4 0.001797 —0.1046 0.05303 —1.6191
M=5 0.001849 —0.1069 0.05277 —1.6052
M=6 0.002455 —0.1097 0.05315 —1.6151
M=1 0.002793 —0.08791 0.05234 —1.6126

regression. Next, we note that the results obtained from our
2R method are similar to those obtained from the original
complex Langevin method. Although they might not do as
well as compared to the corrected complex Langevin
method from [26] and the worldline method, the results
obtained are still not too far off from these methods.
Furthermore, we note that the results obtained using
different values of M for the 2R method are generally
stable, while according to our simulations, the original
complex Langevin method for s = 0 suffers from insta-
bilities, and the result of the original complex Langevin
method from [26] may require adaptive time stepping.
Nonetheless, one should note that by picking s = 0.6, a
value which is way off from our guaranteed region of
s > s, there might be an unquantifiable bias that possibly
grows as we pick values of s closer to 0. Such a possibility
is inferred for the case of the U(1) one-link model, in which
the difference between the true value and the complex
Langevin method grows significantly as s falls below a
certain threshold s; (=0.4 < sy) and gets larger as it
approaches 0. Despite the inability to obtain a result of
better accuracy as compared to the worldline and the
corrected complex Langevin method, the relatively simple
structure and the improved generalizability of the 2R
method might still serve as a method that we can use to
corroborate with alternative methods in the current
literature.

Next, we shall explain the rationale of choosing the 2R
method over the 3R method despite the latter having better
success with the U(1) one-link model. Recall that for our
3R method, we will have to choose a reference sy. From
Fig. 7, we can observe that the estimates for Reu(n)
without regression is better for s, = 0.6 at 0.005666 as
compared to that in sy = 3.2 at 0.01498. Here, better is
defined as how close our results are to the results generated
from the worldline method, at ~0 for Reu(n) at g = 0.2,
4 = /0.1 and an estimate without regression is obtained by
quoting the value at s = 0.1 directly for an estimate as
regression including this point will likely not predict the

value at s = 0 to be too far off from it. The reason for this
difference might be as follows. We note that there is a trade-
off between errors arising from regression and errors
arising from having s that is not sufficiently large enough
to guarantee possible correct convergence. In this case here,
so = 3.2 is too far off from our point of interest at s = 0,
and thus may result in a large error resulting from
regression. This error might be larger than the error arising
from inaccurate simulations with sy = 0.6 and thus
accounts for such a phenomenon. Nonetheless, the values
obtained for both choices of s fail to surpass that obtained
from the 2R method with even the worst value at M = 7 at
0.002793.

On top of that, we note that the benefits of regression
might be limited for the 3D XY model. As seen from the p
values on the right diagrams in Fig. 7, the phenomenon of
infinite variance appears relatively quick for both cases,
with p value dropping to a value close to 0 as soon as s hits
0.5 for s¢ = 0.6 and a similar phenomenon at s = 2.9 for
so = 3.2. Thus, restricting our regression points for which
the p value is at least 0.05 would heavily restrict the
number of points that can be used, and therefore reduces the
prediction ability of the model at s = 0. This is also why we
did not perform regression for this model, as the number of
points might not be sufficient to determine the regression
coefficients.

In both the 2R and the 3R method, a key ingredient
would be the regression method in the final step. Thus, in
view of improving results obtained from regression, we list
down a few plausible explorations. One includes improving
the regression method itself as it was done using ordinary
regression techniques on highly nonlinear models as such
that in (104), where the dependent variable only appears
after a ratio of sums of the exponential of the inverse of its
independent variable. Another possible exploration would
be to reduce the distance of sy from 0 by evaluating the
expectation of a modified observable. Yet another possible
exploration would be to combine the use of the corrected
complex Langevin method with our 2R or 3R method. The
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FIG. 7.

interested reader is invited to try out some of these
explorations in view of improving the accuracy of the
proposed method.

B. Polyakov chain model

In this subsection, we discuss the results for the one-
dimensional Polyakov chain model [47], whose action is
given by

Ul_l)’ ﬂlvﬁ2 € R.
(105)
|

S{UY) =—t(pU,---Uy+prUR' -+

1
Z

(0), = _AN il (O1++0y) exp <ﬂlei(91+...+9N) +/}2€—i(01+...+01v) — % (g% 4+t 912\,)) do, ---doy,

where

Reweighted results for f = 0.2 with

8 x 8 x 8 lattice, 3 = 0.2, p = /0.1, sp = 0.6
0.9 T T T T T T T

0.8 F
0.7
0.6 |
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8 x 8 x 8 lattice, 3 = 0.2, p = /0.1, s5p = 3.2
1.0 . . . . T T T
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04}
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0.2}
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0.0

p-value

parameter s, = 0.6 (top) and 3.2 (bottom).

The observable of interest is O;({U}) = t([U, --- Uy
for [ € Z,. Due to the gauge invariance, this model can
actually be reduced to the one-link model (N = 1) by gauge
fixing [20]. Thus, to test the performance of the 2R method,
we choose to simulate the original problem without fixing
the gauge.

Note that this model works for both U(1) and SU(n)
theories. For the U(1) theory, the trace operator reduces to
the identity operator. Let U, =exp(if;), k=1,...,N.
Then, the expectation of the regularized observable can
be represented by

(106)

Z, = AN exp <ﬂ1 Ot 40y) 4 ) =il +0y) _%(9% 4 912\/))(191 ---dOy.

By the series expansion of the exponential function, we get that

+o0 00 %)
10y 4 s 2m\N/2 °N
Z,= AN g aje J(O1++08) exp (—2(9% + - +¢9,2v)>d91 c-dly = <s> E a; exp <— 2s>

j=—00

j=—o0
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where

+o0 k pk—J
PP :
o= S D ez
k=max(0,j) k'(k - ])!
Similarly, the regularized observable (O,), given in (106)
can be expanded as

(0))s = Zis <2?ﬂ> " ji a; exp (— %) (107)

Inspired by the analysis above, one can choose the
expression

M -2
_ D ko 4k ™

M _NiZ
> o bre™>

in the regression. For SU(n) theories, a similar expression
will be used, while s will be replaced with 2s due to the
reason stated in Sec. V C.

For the general SU(n) theory, the Lie derivative of (105)
can be derived as

(01), (108)

D, SH{U}) = =ipye(U; -+ - Up_14,Ug - Uy)
+ipotr(Uy' - U A UL, - UTY).

In our simulation, we would like to focus on the SU(3)
model, which has also been studied in [20,47]. Following
[20], we choose | and f3, to be 2.27 and 2.04, respectively.
In this case, the exact values of (O,) for [ = 1, 2, 3 obtained
were

(0;) =2.0957, (0,) =0.3761, (03) = —0.52609,
which have been calculated in [47]. For all the numerical
tests, we chose the fixed time step Az =15 x 10~ and
simulate the complex Langevin dynamics up to 7 = 2.
Then, we drew one sample for every 10 time steps until
20 million samples were collected. These samples were
used to estimate the expectations of the observables.

N =16

Following [48], we use the quantity

1 :
AF:N;tr(U,-Ui -1 (109)

to measure the extent of excursion away from [SU(3)J".
Here 7 stands for the 3 x 3 identity matrix. Results for some
values of s and N are given in Fig. 8. For instance, when
N = 16, the complex Langevin dynamics quickly diverges
if no regularization is applied. Even when s = 4, we can
still observe a few spikes of the curve at the magnitude of
10~#, which may indicate convergent but biased results. For
s = 8 and 16, the deviation from SU(3) is well suppressed,
so that the regularized observables computed from the
samples are likely to be reliable. However, as N increases,
the regularization for s = 8 may no longer be sufficient.
The middle diagram of Fig. 8 shows that for s = 8, the
complex Langevin dynamics fails to converge when
N =64 and 128. Even with N = 32, the few spikes on
the curve of AF may imply possibly biased results. A
reasonable modification appears to be setting s to be
proportional to N, as displayed in the right diagram of
Fig. 8. This agrees with the analysis for (108), in which s
also scales with N.

We now focus on the case N = 16. For the 2R method,
we display the results for s ranging from 4 to 34 in Fig. 9.
The dashed horizontal line denotes the reference solution.
As previously observed, smaller values of s will lead to
unstable complex Langevin dynamics. In these examples,
the estimated values of (O;), fors =4 and [ = 1, 2, 3 are
very close to the exact solution. These indicate the
existence of an example where the regularization can work
well without further corrections. However, the reliability of
this method is hard to judge if the exact solution is
unknown.

We then consider the 3R method and display the results
in Fig. 10. Here we select s = 8 and s, = 16 for which the
results are likely to be accurate according to the evolution
of AF. In all the cases, we observe that when s decreases
from s to 0, the numerical results first move toward and
then deviate from the exact solutions, which behave
similarly to the U(1) one-link model shown in Fig. 2.

10
10°

without regularizatio:

5=8 s=N/2

LL{ 3
a4 g
1077 §
10°6 ih
1077
0%
t
FIG. 8.
s=N/2.

Restriction of regularization method AF. Left: different s for N = 16. Middle: fixed s = 8 for N = 16, 32, 64, 128. Right:
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FIG. 10. Reweighted regularization of Polyakov model. s = 16 (top) and s, = 8 (bottom).

This again confirms that, for the high-dimensional inte-
grals, reweighting might fail to provide desired solutions.

In light of the observations above, we thus consider the
use of the 2R method to extrapolate the observables. As
discussed previously, the proposed regression model is
given by

Ni2
D il are”

— - (110)
1 + Zﬁ/lzl bke_T

(0p) =

We will use data points with s € [10,34] in the extrapo-
lation. Note that some of the points closer to s =0 in
Fig. 10 were discarded to avoid including points with
significant biases. The extrapolations obtained using
M =3,4,5, 6,7 were plotted in Fig. 11. For all three

observables, the results obtained were generally acceptable,
though the values at s = 0 were slightly underestimated.

C. Heavy dense QCD

In this section, we consider a more realistic numerical
example originating from the heavy dense QCD model at
finite potential, studied in several works [6,48,49]. The
field is discretized on a four-dimensional lattice indexed by
x = (xg,X) € X, where x = (x1, x,, x3) [see also (87)]. We
consider a vector field {U} defined on the lattice, and each
U,, is a member of the SU(3) group. The action of the

heavy dense QCD model is given by

S{UY) =
where Sp({U}) is defined by

—IndetM,({U}) + Sz({U}),
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FIG. 11. Results of Polyakov model using the 2R method.
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Ss{UY) =B >

and det M, is the fermionic determinant with y being the
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S
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S

Numerical results for the heavy dense QCD model. Left: # = 5.0, u = 2.0; right: # =59, u = 1.4.

xeX v <v,

chemical potential, whose definition is

detM,({U})

Hdet (I+CP,({U}))?

( tr(Ux I Uxﬂx, B2 U;+u2 v X vz) + tr(

U, U

- -1
X405, Ux+y1 R Ux,vl )] - 1> ’

where C =

2k exp(u)]l, C" = [2x exp(—u)] with « being

the hopping parameter, and

x det(l + C'[P,({U})] ),
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We refer the readers to [6] for the Lie derivatives of this
action.

In our simulation, we worked with two sets of param-
eters, namely ¢ = 2.0, f =5.0and y = 1.4, f =5.9. The
value of k was set to be 0.12. The observable of interest is
given by

1
P({U}) = mZtr’PX.

The parameters of the lattice used in our numerical tests is
givenby [y = 6,1, = I, = I3 = 8, and the time step is fixed
to be At =2x107.

For the heavy dense QCD model, we only considered the
2R method. To determine the range of s to be adopted in
the regression model, we again study the evolution of the
deviation from SU(n). This is defined in a similar way as
(109), given by

R .
- (U, UL, —1).
410111213ZZ HUsuUxu = 1)

u=0 xeX

AF

Once again, we observe from Fig. 12 that larger values of s
result in smaller deviations. In both cases, using s = 1
reduces the deviation to the magnitude of 10>, for which
we expect that the results may contain sufficiently small
biases and can be used in the regression model.

To estimate the expectation, we used 6.4 million samples
in our tests. By computing the regularized observable (P),
for s ranging from 1 to 3.5, we perform extrapolation based
on the expression (86) with by = 1. The results are
provided in Fig. 13. In both cases, the regression results
using M =6 and M =7 give similar estimates, whose
values at s = 0 can be considered as approximations of (P).
Note that for f = 5.0, the complex Langevin method is
generally considered to be not applicable in the standard

literature. Thus, the result of our approximation obtained by
the 2R method remains to be validated. For the case with
p =15.9, our estimate agrees with that in [20], in which
gauge cooling is applied to stabilize the dynamics.

VII. CONCLUSION

We have performed an in-depth study of the regulari-
zation of the complex Langevin method. It is demonstrated
that the regularization can produce significant bias in some
cases, and we have proposed a few extensions to the
regularized complex Langevin method:

(1) The 3R method, which performs regression based on

the results of the reweighting method proposed in [32].
(2) The 2R method, which performs regression based on
the regularized results with a number of different
parameters.
The computational cost of the 2R method is higher than the
other two approaches, since multiple complex Langevin
dynamics have to be simulated for different regularization
constants. The reweighting method and its 3R extension
works well in the one-link toy model. However, it is
observed that in the high-dimensional case, the results of
the reweighting were reliable only for a very small range of
parameters. The best results are obtained from the 2R
method, which has successfully simulated one example in
lattice QCD for which the original complex Langevin
method was known to be inapplicable. We expect that this
approach can also be applied to the actions with poles,
which will be studied in our future works.
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