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The complex Langevin method, a numerical method used to compute the ensemble average with a
complex partition function, often suffers from runaway instability. We study the regularization of the
complex Langevin method via augmenting the action with a stabilization term. Since the regularization
introduces biases to the numerical result, two approaches, named 2R and 3R methods, are introduced to
recover the unbiased result. The 2R method supplements the regularization with regression to estimate the
unregularized ensemble average, and the 3R method reduces the computational cost by coupling the
regularization with a reweighting strategy before regression. Both methods can be generalized to the SUðnÞ
theory and are assessed from several perspectives. Several numerical experiments in the lattice field theory
are carried out to show the effectiveness of our approaches.
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I. INTRODUCTION

The complex Langevin method is a numerical approach
used to circumvent the numerical sign problem arising in
the computation of ensemble averages with complex
Boltzmann weights. Such issues may appear in the real-
time quantum field theories [1,2], coupled quantum sys-
tems with chemical potentials such as the Hubbard model
[3,4] and the quantum chromodynamics at finite density
[5,6], and also the superstring theory [7,8]. In these
applications, one usually encounters strong oscillations
in high-dimensional functions, leading to significant can-
cellations when integrating the functions. As a result, the
classical Monte Carlo method fails to work as the variance
is large compared to the mean value, and such difficulty is
known as the numerical sign problem [9].
The complex Langevin method, introduced in [10,11],

tries to tame the numerical sign problem by using a
straightforward extension of a classical sampling method
called the Langevin method. The extension allows the
samples to take complex values due to the complex
Boltzmann weights. Unfortunately, the application of the
complex Langevin method had been severely limited for a
long time due to one of its major drawbacks: the method
often diverges or converges to incorrect solutions [12]. The
justification of the method and the understanding of its

failure were explored in several works [13–16], but the
precise reason for the biased results remained unclear until
recently [17,18]. In general, the failure of the complex
Langevin method is due to the lack of control of excursions
away from the real axis. Many efforts have been made in
the past decade to restrict such excursions. For instance, the
use of adaptive time steps is studied in [19] to avoid
runaway trajectories; the method gauge cooling, which
utilizes the gauge invariance to minimize the distances to
the real axis, is proposed in [20] and has achieved many
applications [21–23]; and the dynamical stabilization is
introduced in [24] and tested in [25]. In the case where the
method converges, the work [26] proposes an approxima-
tion technique to quantify the bias. Other attempts to
improve the complex Langevin method include the cou-
pling with Lefschetz thimbles [27], the deformation tech-
nique [28], etc. We invite the readers to refer to [29,30] for a
comprehensive review of the recent advances.
In general, the complex Langevin method is still a

numerical tool under construction. In this paper, we are
going to carry out a deeper study of the aforementioned
dynamical stabilization. The idea of dynamical stabilization
is to add converging velocity fields to the complex
Langevin equation to restrict the excursion of samples.
Instead of working on the original approach introduced in
[24], we will investigate a slightly improved version
considered in [31], called the method of modified action.
Here we will follow [17] and name this approach as the
“regularization” of the complex Langevin method.
Compared with the original approach, this method is easier
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to be justified theoretically. Our focus will be on possible
modifications upon regularization. These include coupling
regularization with the reweighted complex Langevin
method [32,33] and attempts to recover the unbiased result
using regression. Our study is to be carried out via a deep
look into a motivating example in the Uð1Þ one-link case,
after which the method will be generalized to the SUðnÞ
theories and applied to several lattice field theories, includ-
ing the 3DXY model [34], the Polyakovmodel [35], and the
heavy dense QCD (quantum chromodynamics) [20].
The rest of the paper is organized as follows. In Sec. II,

we briefly review the complex Langevin method and its
general theory. In Sec. III, the 2R and 3R methods are
presented for a motivating one-dimensional example in the
Uð1Þ one-link case. Then these methods are generalized
to multidimensional integrals in the Uð1Þ theory in Sec. IV
and to the SUðnÞ theories in Sec. V. In Sec. VI, the
applications of these methods to several lattice filed
theories are discussed. Finally, the paper ends with some
concluding remarks in Sec. VII.

II. A REVIEW OF THE COMPLEX
LANGEVIN METHOD

Following [20], we use the notation f·g to denote the
discrete field defined on a lattice. For instance, suppose
fϕg is a three-dimensional real scalar lattice field. Then,
fϕg contains a set of variables ϕx ∈ R with x being a three-
dimensional multi-index representing the lattice point. If
the lattice has N points, then fϕg is essentially a vector in
RN . For simplicity, we will also use ϕk, k ¼ 1;…; N to
denote the components of fϕg. In this section, we will
provide a brief introduction to the complex Langevin
method and its regularization. For introductory purposes,
we will temporarily restrict ourselves to the scalar fields
where ϕk ∈ R or T, where T stands for the torus
T ¼ R mod 2π.
With the notations defined above, we are interested in

computing the following ensemble average:

hOi ¼ 1

Z

Z
Ω
OðfϕgÞe−SðfϕgÞdfϕg; Z¼

Z
Ω
e−SðfϕgÞdfϕg;

ð1Þ

where Ω ¼ RN or TN. When SðfϕgÞ is real, we can regard
Z as the partition function, so that the integral can be
evaluated by the Langevin method [36]. Specifically, the
Langevin equation associated with (1) is given by

dϕk¼KkðfϕgÞdtþdwk; Kk¼−
∂S
∂ϕk

; k¼1;…;N: ð2Þ

Here wk, k ¼ 1;…; N are independent Wiener processes
satisfying dw2

k ¼ 2dt for each k. The Fokker-Planck equa-
tion of this stochastic process is

∂P
∂t þ

XN
k¼1

∂
∂ϕk

ðKkPÞ ¼
XN
k¼1

∂2P
∂ϕ2

k

; ð3Þ

where Pðfϕg; tÞ represents the probability distribution of
the field fϕg at time t. If e−SðϕÞ is integrable and the
stochastic process (2) is ergodic, then Pðfϕg; tÞ will
converge to the equilibrium distribution 1

Z e
−SðfϕgÞ as

t → ∞. As a result, we can approximate (1) by

hOi ≈ 1

Nsample

XNsample

m¼1

OðfΦðmÞgÞ; ð4Þ

where fΦðmÞg, m ¼ 1;…; Nsample are the samples gener-
ated by simulating the Langevin equation (2) and choosing

ΦðmÞ
k ¼ ϕkðT þmΔTÞ for a sufficiently large T and suffi-

ciently long time difference ΔT.
However, when SðfϕgÞ is complex, the Langevin

method is no longer valid. A possible indicator would
be that the partition function Z is now complex valued. To
handle such complex actions, the complex Langevin
method [11,37] postulates stochastic equations of the same
form as (2) with the trajectories of the process wandering in
the complexified space ΩC. Here

ΩC ¼
�
CN; if Ω ¼ RN

ðT þ iRÞN; if Ω ¼ TN
: ð5Þ

Now we assume that both Oð·Þ and Sð·Þ can be extended to
ΩC holomorphically. Thus, the stochastic process (2) is
again well defined, and the complex Langevin method
again approximates hOi using (4). Since Kkð·Þ can take
complex values, the field fϕg becomes a complex field,
which can also be represented by two real fields fϕRg and
fϕIgwith ϕk ¼ ϕR

k þ iϕI
k. The evolution of these two fields

follows the complex Langevin equation:

�
dϕR

k ¼ KR
k ðfϕRg; fϕIgÞdtþ dwk; Kk ¼ −ReKk

dϕI
k ¼ KI

kðfϕRg; fϕIgÞdt; KI
k ¼ −ImKk

; ð6Þ

where Kk is again the partial derivative of S as defined in
(2). The corresponding Fokker-Planck equation for the
probability density function has the form PðfϕRg; fϕIg; tÞ,
which evolves according to

∂P
∂t þ

XN
k¼1

� ∂
∂ϕR

k
ðKR

kPÞþ
∂

∂ϕI
k
ðKI

kPÞ
�
¼
XN
k¼1

∂2P
∂ðϕR

k Þ2
: ð7Þ

The correctness of the complex Langevin method
requires the following two conditions:

(i) The stochastic process (6) is ergodic.
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(ii) The following equation holds:

lim
t→∞

Z
ΩC

OðfϕgÞPðfϕRg; fϕIg; tÞdfϕg

¼ 1

Z

Z
Ω
OðfϕgÞe−SðfϕgÞdfϕg: ð8Þ

As mentioned in the introduction, observations indicate
that when the stochastic process is ergodic, the complex
Langevin method may sometimes produce inaccurate
results, which implies the possibility that (8) fails to hold.
This occurs especially when Pð·; ·;∞Þ decays slowly, and
the details have been studied in [17,38,39]. As a remedy,
the method of dynamical stabilization proposed in [24]
adds an artificial term to the imaginary part of the drift
velocity Kk to suppress the tail of P. Specifically, in (6), Kk
is chosen as

KkðfϕgÞ ¼ −∂ϕk
SðfϕgÞ− iαDSðImϕkÞr; ∀ k¼ 1;…;N;

ð9Þ

where r is an odd positive integer and αDS is a positive
parameter balancing the stabilizing effect and the bias
introduced by this regularization. Since (9) is no longer the
derivative of an analytic function, the justification of this
approach remains open.
In this paper, we will focus on another type of regulari-

zation introduced in [17], in which a specific problem is
studied. In the next section, we will conduct a deeper study
of the regularization technique based on this motivating
example and consider its possible extensions.

III. MOTIVATING EXAMPLE—
REGULARIZATION OF COMPLEX

LANGEVIN FOR THE Uð1Þ
ONE-LINK MODEL

We will motivate the use of regularization and dynamic
stabilization by applying our proposed method on the one-
dimensionalUð1Þ one-link model studied in [17,40], where
Ω ¼ T . Following [17], we use x to denote the integral
variable. The action is a 2π-periodic function:

SðxÞ ¼ iβ cos x;

with β ∈ Rþ, and x ∈ T .

A. Regularization of complex Langevin

Inspired from [17], the regularized action for this model
is given by

SsðxÞ ¼ SðxÞ þ sx2

2
¼ iβ cos xþ sx2

2
ð10Þ

for any given s > 0. As discussed in [17], for large values
of s, the value of hOi agrees with its corresponding true
value with a modified action. However, a divergence is
observed for values of s close to 0.4 as we attempt to set s
close to 0 to retrieve the true value of hOi with unregu-
larized action. The results are also reproduced in Fig. 1. The
authors have commented that the use of appropriate
regression functions might have by extrapolating the results
from s > 0.4 to obtain a decent estimate at s ¼ 0. We will
thus be following a similar argument while supplementing
it with relevant regression functions with the appropriate
mathematical justification.
Note that due to the presence of the regularizing term, the

periodicity for SðxÞ in x is destroyed. Therefore, in the
definition of the observable, we will “unroll” the torus T
and change the integral domain to R. Thus, under the
modified action, we can rewrite equations (1) as

hOis ¼
1

Zs

Z
R
OðxÞ expð−SsðxÞÞdx; ð11Þ

with

Zs ¼
Z
R
expð−SsðxÞÞdx: ð12Þ

Upon complexification, we obtain the complex action

SsðzÞ ¼ SðzÞ þ sz2

2
; z ∈ C: ð13Þ

The corresponding drift terms can be computed as
follows1:

FIG. 1. The graph depicting the numerical results and true
values of ImðheixisÞ against s for β ¼ 0.5.

1Following the convention in (2) and in (90), we will represent
Kx;s as the drift term for the scalar field ϕx with regularized
action. However, as in the one-dimensional case, as it is under-
stood that we are only dealing with one field variable (which is
written as x), we will drop the comma that separates x and s and
simply write it as Ks.
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KR
s ðx; yÞ ¼ −ReðS0sðxþ iyÞÞ ¼ −β cos x sinh y − sx;

KI
sðx; yÞ ¼ −ImðS0sðxþ iyÞÞ ¼ β sin x cosh y − sy: ð14Þ

As for the regularized action, two questions need to be
answered:

(i) What is the relation between the regularized observ-
able hOis and the original observable hOi?

(ii) Can we apply the complex Langevin method to
obtain the correct value of hOis?

The following two sections will be devoted to the explora-
tion of their answers.

1. Correct convergence under regularized action

Note that is natural to expect that the regularized
observable will converge to the original observable as
the regularizing parameter vanishes:

lim
s→0þ

hOis ¼ hOi: ð15Þ

However, this is not immediately clear since we have
changed the integration domain from ½0; 2πÞ to R as we
apply the regularization. Fortunately, the result above still
holds under some mild conditions. To prove the limit (15),
we need the following lemma:
Lemma 3.1. For any m; β ∈ R,

Z
R
eimxe−iβ cos x−s

x2
2 dx ¼

X
n∈Z

inJnð−βÞ
ffiffiffiffiffiffi
2π

s

r
e−

ðmþnÞ2
2s ;

where Jn denotes the Bessel function of the first kind.
Proof.—Applying the Jacobi-Anger expansion

e−iz cosϕ ¼
X
n∈Z

inJnð−zÞeinϕ for all ϕ ∈ R: ð16Þ

to (19), we have

Z
R
eimxe−iβ cos x−s

x2
2 dx ¼

X
n∈Z

inJnð−βÞ
Z
R
eiðnþmÞx−sx2

2 dx ¼
X
n∈Z

inJnð−βÞ
ffiffiffiffiffiffi
2π

s

r
e−

ðmþnÞ2
2s : ð17Þ

Here, we have interchanged the infinite sum and the integral, which can be justified using dominated convergence theorem
by computing

���� XN
n¼−N

inJnð−βÞeiðnþmÞx−sx2
2

���� ¼ e−s
x2
2

���� XN
n¼−N

inJnð−βÞeinx
���� ≤ 4e−s

x2
2 ð18Þ

for a given N ∈ Zþ that is large enough, as the finite sum inside the absolute sign tends to e−iβ cos x with modulus 1 if (16) is
applied. The resulting upper bound in (18) is clearly integrable on R for a fixed β and s.
Proposition 3.2. For theUð1Þ one-link model, suppose the observableOðxÞ is 2π periodic and absolutely continuous on

½0; 2πÞ. In addition, if we demand that O is a (1þ α)-Hölder class function for some α > 0, then, we have that (15) holds.
Proof.—First, we consider the Fourier series expansion of OðxÞ given by

OðxÞ ¼
X
m∈Z

Ômeimx: ð19Þ

Furthermore, from a standard result in harmonic analysis, we know that the convergence of the infinite series on the right-
hand side of (14) is uniform, which thus implies that the Fourier series on the right can be used to represent O. From here,
we apply Lemma 3.1:

Z
R
OðxÞ expð−SsðxÞÞdx ¼

X
m∈Z

Ôm

Z
R
eimx expð−SsðxÞÞdx ¼

X
m∈Z

X
n∈Z

inÔmJnð−βÞ ·
ffiffiffiffiffiffi
2π

s

r
e−

ðmþnÞ2
2s ; ð20Þ

Z
T
OðxÞ expð−SðxÞÞdx ¼

X
m∈Z

Ôm

Z
2π

0

eimxe−iβ cos xdx ¼
X
m∈Z

Ôm

Z
2π

0

eimx
X
n∈Z

inJnð−βÞeinxdx

¼ 2π
X
m∈Z

X
n∈Z

inÔmJnð−βÞδn;−m ¼ 2π
X
m∈Z

imÔ−mJmð−βÞ; ð21Þ

where the last equality of (20) is due to Lemma 3.1 and (21) utilizes (16) and the property that JnðxÞ ¼ J−nðxÞ for all integer
n. Here, we note that in (20) and (21), we have swapped the relevant infinite series and integration. This can be justified
using the dominated convergence theorem by considering the following partial sums for any N ∈ N:
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���� XN
m¼−N

Ômeimx expð−SsðxÞÞ
���� ¼

���� XN
m¼−N

Ômeimx−iβ cosðxÞ−sx2
2

����
≤ 2

XN
m¼1

K
jmj1þα e

−sx2
2 þ jÔ0je−sx

2

2 ≤ e−s
x2
2 ð2Kζð1þ αÞ þ jÔ0jÞ; ð22Þ

where ζð·Þ is the Riemann zeta function, and we have used the assumption that O is a (1þ α)-Hölder class function for
some α > 0. This means that there exists a constant K such that

jÔmj ≤
K

jmj1þα : ð23Þ

Thus, from (22), we can see that the upper bound is clearly integrable on R. Thus, by dominated convergence theorem, the
aforementioned interchange is justified.
Equation (20) implies that

lim
s→0þ

ffiffiffiffiffiffi
s
2π

r Z
R
OðxÞ expð−SsðxÞÞdx ¼

X
n∈Z

inÔ−nJnð−βÞ: ð24Þ

For Zs and Z, one can use the same technique to deduce that

lim
s→0þ

ffiffiffiffiffiffi
s
2π

r
Zs ¼ J0ð−βÞ; Z ¼ 2πJ0ð−βÞ: ð25Þ

It is now clear from (21), (24), and (25) that

lim
s→0þ

hOis ¼
lims→0þ

P
m∈Z Ôm

ffiffiffiffi
s
2π

p R
R eimxe−iβ cos x−s

x2
2 dx

lims→0þ
ffiffiffiffi
s
2π

p
Zs

¼ 1

J0ð−βÞ
X
m∈Z

Ô−mimJmð−βÞ ¼ hOi; ð26Þ

which concludes the proof. ▪

The result above justifies the regularization of the
action—if s is chosen small and hOis can be correctly
computed by the complex Langevin method, the value hOis
can be regarded as an approximation of hOi.

2. Correct numerical convergence for complex
Langevin method

Despite the guarantee for correct convergence given in
Proposition 3.2, numerical results from the complex
Langevin method suggest otherwise. The numerical experi-
ments on the regularized action have been carried out in
[17], and we have repeated the same experiments for
β ¼ 0.5. The results are plotted in Fig. 1 for OðxÞ ¼ eix,
where we can observe a divergence between the true values
represented by the red curve and the numerical results
represented by the data points. The data points are obtained
via numerical simulations with a fixed time step of Δt ¼
3 × 10−4 for values of s closer to 0 and Δt ¼ 1 × 10−3 if
otherwise, with each sample obtained after every 2000
steps for a total of 106 samples for each value of
s ∈ f0.05kj0 ≤ k ≤ 30; k ∈ Zg.

In view of Proposition 3.2, we can deduce that such
divergence between the true values and the numerical
results must be due to the corresponding complexification
of the Langevin dynamics. It is thus instructive to inves-
tigate the correct values of s in which the numerical results
from our complex Langevin method agree with that from
the original Langevin dynamics. The phenomenon that
the correctness of complex Langevin changes with the
parameter in the action has been observed and explained
in a number of previous works [15,38,39]. In [39], it is
demonstrated in another example that the correctness of
the complex Langevin results can be guaranteed only when
the probability density function is localized, meaning that
for all t > 0, the solution of (6) always satisfies yðtÞ ∈
½Y−; Yþ� for some Y− < Yþ. Our problem has a close
similarity to the example in [39], and it can be expected that
we also require the localization of the yðtÞ to guarantee
the correctness of complex Langevin. To confine the value
of yðtÞ, we need the imaginary velocity KI to satisfy
KI

sðx; Y−Þ > 0 and KI
sðx; YþÞ < 0 for all x. Note that the

choice of 0 here is due to the fact that in all simulations of
the complex Langevin dynamics, we will always set the
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initial coordinates to be at the origin. This thus motivates
the following proposition:
Proposition 3.3. For the Uð1Þ one-link model, given a

fixed s > 0 and β > 0, if s > 1.509β, then there exist
Yþ > 0 and Y− < 0 such that

KI
sðx; YþÞ < 0 and KI

sðx; Y−Þ > 0: ð27Þ

Proof.—We first consider the case for KI
sðx; YþÞ < 0.

For any ðx; yÞ ∈ R2, using the expression from (14), we are
looking to solve the following inequality

KI
sðx; yÞ ¼ β sinðxÞ coshðyÞ − sy < 0 ð28Þ

in the sense that there exists a y ¼ Yþ > 0 such that for all
x ∈ R, KI

sðx; YþÞ < 0.
First, for this to hold for all x, it must thus hold at a point

in which sin x is maximum, that is, it takes the value of 1, as
coshðyÞ > 0 for all y ∈ R. We define the new expression of
KI

s in which we replace sinðxÞ by 1 as K̄I. Thus, we are
looking to solve for a region in the parameter space (β, s)
such that such a Yþ would be guaranteed. The strategy is as
follows. First, we fix the parameters β and s and solve for
the minimum value of this function K̄I at y0 in terms of β
and s. Since this minimum value is a function of β and s, we
can in fact find such a region in the parameter space such
that K̄Iðy0Þ < 0. Thus, since K̄I is minimized at y0 and is
negative, we then have for all y ∈ ½0; Yþ�with Yþ ¼ y0 that
K̄IðyÞ < 0 and thus KI

sðx; yÞ < 0 for all x ∈ R and
y ∈ ½0; Yþ�. Therefore, we have y0 as the required Yþ that
we are looking for. To apply this strategy, we first look at
the corresponding function for K̄I:

K̄IðyÞ ¼ β coshðyÞ − sy: ð29Þ

Using standard one-variable optimization techniques, we
see that global minimum is attained at

y0 ¼ sinh−1
�
s
β

�
: ð30Þ

Nowwe demand that the minimum value of K̄I be negative:

β coshðy0Þ − sy0 < 0: ð31Þ

Inserting (30) into the equation above and letting χ ¼ s=β,
we can simplify the inequality (31) to

e
ffiffiffiffiffiffiffiffiffiffi
1þð1χÞ2

p
− χ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

q
< 0; ð32Þ

which can be solved numerically to obtain

χ > 1.509; s > 1.509β; ð33Þ

and the proof is thus complete for this case.
For the other case in (27), we can use the same strategy to

obtain the same sufficient condition s > 1.509β, which
completes the proof of the proposition. ▪
Indeed, as we can see from Fig. 1, for points after

s ¼ 0.8 ≈ 1.6β > 1.509β, we can observe that the true
values are coherent with the numerical values obtained.
For s ∈ ð0.5; 0.7Þ, although the numerical results from
complex Langevin appear to be on the red curve, we
believed that a small systematic bias has occurred.
In view of Propositions 3.2 and 3.3, it seems unlikely that

we can obtain good numerical values of hOi solely with the
use of a regularized action, as seen in Fig. 1. This thus
motivates the following subsection, in which we will
consider the fix of the regularized values.

B. Reweighted complex Langevin method
with regularized action

In this subsection, we will introduce the reweighted
complex Langevin method aimed at obtaining numerical
results for hOis.
In [32], the authors consider the action Sξ with a

parameter ξ. It then holds for any ξ and ξ0 that

R
OðxÞSξðxÞdxR

SξðxÞdx
¼
R OðxÞSξðxÞ

Sξ0 ðxÞ
Sξ0ðxÞdxR SξðxÞ

Sξ0 ðxÞ
Sξ0ðxÞdx

: ð34Þ

Both the numerator and the denominator on the right-hand
side can be approximated using the complex Langevin
method with action Sξ0ðxÞ. By choosing an appropriate ξ0,
one may get a better approximation of hOi as compared to
applying the complex Langevin method directly to the left-
hand side of (34). In our case, the regularized action includes
a regularizing parameter s, in which we know that the true
value could begenerated at s ¼ 0. This inspires us to develop
our algorithm according to the following proposition:
Proposition 3.4. The following equality holds for all

s; s0 ≥ 0:

hOðxÞis ¼
hOðxÞ expððs0−sÞx2

2
Þis0

hexpððs0−sÞx2
2

Þis0
: ð35Þ

This proposition is a direct result of (34) by setting ξ to be s.
Thus, from Proposition 3.3, as long as we pick s0 > 1.509β
and s > 0, we are guaranteed that the numerical values of two
integrals in the ratio obtained using the complex Langevin
method for the right-hand side of 3.4 have no biases. By
equality (35), we can thus obtain an accurate numerical value
of hOis even for s < s0. Setting s → 0 in (35), we thus have
an accurate numerical value of hOi.
Following Proposition 3.4, we carry out numerical

experiments by fixing s0 ¼ 0.8 and compute hOis for
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s ∈ ð0; 1.5Þ. The numerical values were generated using a
fixed time step of Δt ¼ 10−3, with each sample obtained
after every 2000 steps for a total of 107 samples at s0 ¼ 0.8.
Values of hOis for s ≠ 0.8 were obtained from this set of
points generated via the equation (35) above. Furthermore,
the corresponding error bars were generated using a M out
of a N naïve bootstrap method at each s, with M ¼ 20000

and N ¼ 107, repeated for n ¼ 10000 times. The results
and the estimated error bars are plotted in Fig. 2. Indeed, we
observe that for s around 0.5, we have obtained a better
approximation of hOi. However, two worrying phenomena
have also surfaced from this experiment. Namely,

(i) The numerical value of hOis deviates from the true
value when s gets smaller than 0.5.

(ii) As s reduces, the estimated standard error start to
grow dramatically from s around 0.4.

Nonetheless, it can be shown that the divergence for hOi is
due to a large standard error, in which the standard error for
hOis grows as the value of s decreases from s0 to 0. This thus
provides motivation for the following section, in which the
introduction of amathematicallymotivated regressionmodel
aims to obtain an improved numerical estimate for hOi.

C. Coupling reweighted complex Langevin method
with regularized action, with regression

As mentioned at the start of this section, an important
question to address would be the choice of the regressors
that we should use to perform regression. Will a simple
polynomial regression work? What would be considered as
appropriate regressors? To answer these questions, we refer
back to Fig. 1. The graph above shows the graph of the true
curve of hOis forO ¼ eix with β ¼ 0.5 in red. As observed,
the curve becomes very flat when s is close to zero, which
implies that the higher-order derivatives of ImðheixisÞmight
be 0 at s ¼ 0. This is not a fact captured by arbitrary

polynomial regressors. Thus, if such an observation is true,
we would have to turn to other regressors. This motivates
the proposition below.
Proposition 3.5. For the Uð1Þ one-link model with

regularized action, for any observable O satisfying the
conditions in Proposition 3.2 and for any given k ∈ Zþ,
we have

dk

dsk
hOisjs¼0 ¼ 0: ð36Þ

Proof.—The proof of this proposition continues from the
proof of Proposition 3.2. From (17), the numerator for hOis
constitutes a sum over m of the expression in (17). The
denominator however, consists of the m ¼ 0 term in (17).
Multiplying both the numerator and the denominator by a
factor of

ffiffiffiffi
s
2π

p
, we have that

hOis ¼
P

m∈Z
P

n∈Z inJnð−βÞÔme−
ðmþnÞ2

2sP
n∈Zi

nJnð−βÞe−n2
2s

≔
f1ðsÞ
f2ðsÞ

: ð37Þ

As the given function above is clearly infinitely differ-
entiable, we take the derivative with respect s on both sides
to obtain

d
ds

hOis ¼
f01ðsÞf2ðsÞ − f02ðsÞf1ðsÞ

ðf2ðsÞÞ2
; ð38Þ

where

f01ðsÞ ¼
X

ðnþmÞ∈Znf0g
inJnð−βÞÔm

�ðmþ nÞ2
s2

�
e−

ðmþnÞ2
2s ;

f02ðsÞ ¼
X

n∈Znf0g
inJnð−βÞ

�
n2

s2

�
e−

n2
2s : ð39Þ

Here, we used Znf0g since if n or nþm is equals to 0
before differentiating, the corresponding term in the infinite
series is a constant due to the absence of the exponential
factor and disappears upon differentiation. By writing
down (39), we have explicitly swapped the derivative
and the infinite sum. This can be justified using a standard
result in analysis (see Theorem 7.17 in [41]) as follows.
First, we restrict our attention to ½0; sr� for sr large enough.2
Then, we will proceed to show that the derivative of the
sequence of partial sums converges uniformly on ½0; sr�.
Below, we will verify the conditions for f01ðsÞ, in which a
simpler case will thus hold for f02ðsÞ. The uniform con-
vergence can be verified using Weierstrass M test by first
computing

FIG. 2. The graph depicting the divergence of numerical results
obtained from reweighted complex Langevin method and true
values of ImðheixisÞ against s for β ¼ 0.5 due to large standard
errors; −0.25815 represents the true value at s ¼ 0.

2“Large enough” can be understood in the sense that it is
sufficient for our numerical simulations and that sr > s0.
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X
ðnþmÞ∈Znf0g

����inJnð−βÞÔm

�ðmþ nÞ2
s2

�
e−

ðmþnÞ2
2s

����
≤

X
ðmþnÞ∈Znf0g

jJnð−βÞj
�
ð1 − δ0mÞ

K
jmj1þα þ δ0mjÔ0j

�
4

ðmþ nÞ2
�ðmþ nÞ2

2s

�
2

e−
ðmþnÞ2

2s

≤ 4

�X
n∈Z

jJnð−βÞj
�X

m∈Z

�
ð1 − δ0mÞ

K
jmj1þα þ δ0mjÔ0j

�
¼ MðβÞ½2Kζð1þ αÞ þ jÔ0j� < þ∞; ð40Þ

where we have used the following facts:
(i) O is a (1þ α)-Hölder class function for some α > 0,

for Fourier coefficients Ôn, where n ≠ 0, and that
jÔ0j is bounded. These two cases are separated by
using the Kronecker delta symbol δ0m.

(ii) Since mþ n ≠ 0, then we have 1
ðmþnÞ2 ≤ 1 for

all m; n ∈ Z.
(iii) x2e−x ≤ 4

e2 ≤ 1 for all x ≥ 0.

(iv) MðβÞ ≔P∞
n¼−∞ jJnð−βÞj < þ∞ for any β > 0.3

With (40), the aforementioned interchange in (39)
is justified. Furthermore, since lims→0þ f01ðsÞ ¼ 0

and lims→0þ f02ðsÞ ¼ 0, and lims→0þ f1ðsÞ < þ∞ and
lims→0þ f2ðsÞ < þ∞, then we have d

ds hOisjs¼0 ¼ 0.
Now, assume that (36) has been proven for all k ¼

1;…; K for some K > 0. By the general Leibniz rule,

fðKþ1Þ
1 ðsÞ ¼

XKþ1

k¼0

fðKþ1−kÞ
2 ðsÞ dk

dks
hOis: ð41Þ

Using a similar logic as in (39), we can write down the
higher order derivatives of f1 and f2 below:

fðqÞ1 ðsÞ ¼
X

ðnþmÞ∈Znf0g
inJnð−βÞÔðmÞh1;qðsÞe−

ðmþnÞ2
2s and

fðrÞ2 ðsÞ ¼
X

n∈Znf0g
inJnð−βÞh2;rðsÞe−n2

2s ; ð42Þ

where both h1;kðsÞ and h2;kðsÞ refer to polynomials in 1
s of

degree 2k. Note that the interchanges between the infinite
sums and the q and rth order derivatives are still justified.

This is because, similar to (40), the presence of e−
ðmþnÞ2

2s will
always be able to overwhelm any polynomials in 1

s and
create 1

ðmþnÞγ for a sufficiently larg γ. Taking the limit

s → 0þ on both sides of (41), we obtain

0 ¼ f2ð0Þ lim
s→0þ

dKþ1

dKþ1s
hOis: ð43Þ

Thus (36) holds for k ¼ K þ 1 since f2ð0Þ ≠ 0. By the
principle of mathematical induction, (36) holds for all
positive integer k. ▪
Remark.—The proposition above indicates that the

function hOis is not analytic at s ¼ 0, which is essentially
due to the fact that both integrals of OðxÞ expð−SsðxÞÞ and
expð−SsðxÞÞ are not analytic at s ¼ 0. To view the reason in
a more straightforward way, we can write both integrands
as QðxÞ expð−sx2=2Þ, where QðxÞ is a 2π-periodic func-
tion, whose Fourier transform is the sum of Dirac delta
functions on integers. When s is small, the Fourier
transform of expð−sx2=2Þ, which has the form
s−1=2 expð−ξ2=ð2sÞÞ, is a narrow Gaussian peaks at the
origin. Thus, by taking the convolution, the Fourier trans-
form of QðxÞ expð−sx2=2Þ can be depicted as a number of
Gaussians centered at all integer frequencies. Since the
parameter s appears as the denominator inside the expo-
nential function, the Fourier transform (and thus the
integral) is obviously nonanalytic with respect to s.
Upon acknowledging the information presented in

Proposition 3.5, we can investigate the structure of hOis
presented in (37). From here, we can consider regressors in
the form of a ratio of sum of exponential functions as
summarized below:
Proposition 3.6. For any observable O satisfying the

conditions as stated in Proposition 3.2, an appropriate
rational representation would be

hOis ¼
P∞

k¼0 ake
−k2

2sP∞
k¼0 bke

−k2
2s

: ð44Þ

Proof.—This follows directly by considering all possible
integer combinations of both the numerator and the
denominator in (37). ▪
Henceforth, we can use the rational representation in

(44) and consider the following regression model:

hOis ¼
P

M
k¼0 ake

−k2
2s

1þPM
k¼1 bke

−k2
2s

≔
AMðsÞ
BMðsÞ

: ð45Þ

In the regression model above, the coefficients ak and bk
are obtained by minimizing the objective function:

3This can be observed from its asymptotic behavior for a large
jnj, such that for a fixed β, jJnð−βÞj ∼ 1

Γðjnjþ1Þ ðjβj2 Þjnj.
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argminak;bk

Z
smax

smin

jAMðsÞ − fðsÞBMðsÞj2ds; ð46Þ

where smin and smax are the lower and upper bounds of s for
which we can obtain the value of hOis via simulation, and
fðsÞ refers to a certain approximation of hOis for
s ∈ ½smin; smax�. In our experiments below, fðsÞ is chosen
as a polynomial of s and is obtained via least squares
approximation.

D. Numerical results

In this subsection, we will attempt to include simulations
and regressions conducted for OðxÞ ¼ eix with β ¼ 0.5.
Here, we note that, from [17], the exact value of heixi at
β ¼ 0.5 is given by

heixi ¼ I1ð−0.5iÞ
I0ð−0.5iÞ

¼ 0 − 0.25815i:

First, we will attempt to obtain an estimate for heixi
through the use of regularization and regression. Note that
we have shown that for s ≥ 0.8, the numerical values

obtained from the complex Langevin method are accurate.
In addition, as inspired from Fig. 1, we start to see a
divergence between the true curve and the complex
Langevin values at s ≈ 0.4. Thus, we will attempt to include
the complex Langevin values for two different cases,
s ≥ 0.4 and s ≥ 0.8, and apply the regression model in
Proposition 3.6 with different values of M for each case.
The numerical values were generated using a fixed time
step of Δt ¼ 10−4, with each sample obtained after every
2000 steps for a total of 106 samples for each value of
s ∈ f0.01kj40 ≤ k ≤ 150; k ∈ Zg. Due to fluctuations
present in the raw dataset, we have employed an inter-
polation using a quartic polynomial in s to average out the
fluctuations prior to solving the optimization problem (46).
Here, we note that this is consistent with the original
regression model in Proposition 3.6, in which for s not
close to 0, we do not have an issue with a flat curve as s
approaches 0 and can therefore approximate such as
expression with an appropriate polynomial. The relevant
data points and regression curves are summarized in Fig. 3.
Next, we will illustrate the possible advantage

obtained by reweighting our observables in accordance

FIG. 3. Numerical results obtained by performing the relevant regression on observables via direct regularization. The left plot utilizes
data points for s ≥ 0.4 and the right plot utilizes data points for s ≥ 0.8.

FIG. 4. The figure on the left depicts the histogram of the obtained distribution for Ōi at s ¼ 0. The figure on the right corresponds to
the corresponding p values obtained for 0 ≤ s ≤ 1.5.
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to Proposition 3.4. As observed in Fig. 2, starting from
s ¼ 0.4, the corresponding standard error grows rapidly as
s goes to 0. Thus, this portion of data may not be suitable to
be used in the regression. We would therefore like to
remove part of the information from our dataset. The
criterion for this is based on the p value and will be
described in the following paragraph.
The growth of the standard error as s approaches 0 can be

explained as follows. First, we label each realization of the
mean of the observable eix as Ōi for each iteration of the
bootstrap method. Next, we obtain a histogram for the Ōi,
as shown in the left diagram of Fig. 4. From there, we can
observe that although the distribution looks somewhat
symmetric and normal, the distribution of the Ōi seems
to be concentrated more at its mean. We can support this
with the use of a Kolmogorov-Smirnov test, conducted
against a normal distribution at each value of s. If the p
value at a given s happens to be below 0.05, then we will
reject the null hypothesis that the underlying distribution
for hOis ¼ heixis is normal and concluding that the under-
lying distribution at that value of s is non-normal. Under the
generalized central limit theorem, an instance in which a
mean distribution converges to a non-normal distribution
must correspond to the fact that the underlying population
has an infinite variance. Thus, as seen from the right
diagram of Fig. 4, we will perform regression using points
generated for s ≥ 0.39, which corresponds to values of s
with p value greater than or equals to 0.05. The results are
summarized below.
The numerical results for both methods, direct regression

with regularized action (2R method) and regressing
reweighted observables (3R method),4 are summarized in
Table I. Note that we have excluded the estimates obtained
by the 2R method using data points with s ≥ 0.8 as we can

see from Fig. 3 that the values of Imheixi predicted for the
given values of M are both inaccurate and imprecise.
We summarize some of the relevant key observations

from Figs. 3–5 and Table I below.
(i) From Table I, for a fixedM ≥ 3, we can see that both

methods are on par in terms of their accuracy in
estimating the value of Imheixi.

(ii) However, the matched performance of the 2R
Method for s ≥ 0.4 as mentioned is on top of the
fact that we have used a priori information on the
divergence of the numerical values generated using
our complex Langevin algorithm as in Fig. 1. This
piece of information might not be available for
general Uð1Þ models such as the 3D XY Model.
Alternatively, one might be able to obtain such
information via other methods, such as the analysis
of boundary terms as in [17,26].

(iii) In the absence of a priori information, as mentioned,
the results obtained via the 2R method for s ≥ 0.8
are both inaccurate and imprecise. This can be
already be seen from the right plot in Fig. 3.
Therefore, to get better results using the 2R method,
one may consider including some biased results with
acceptable errors [e.g., hOis with s ∈ ð0.4; 0.8Þ in
this example].

(iv) In addition, we can see from Fig. 1 that the true
curve (for Imheixis as a function of s) diverges from

FIG. 5. Numerical results obtained by performing the relevant regression on reweighted observables. The plot on the right enlarges the
behavior of curves of different M for small values of s and values of relevant observable close to −0.25815.

TABLE I. Estimates of Imheixi for various methods at β ¼ 0.5.
Note that the % discrepancy is calculated with respect to the true
value of −0.25815.

Direct Reg s ≥ 0.4 % Reweighted %
M (Fig. 3; 2R Method) Disp (Fig. 5; 3R Method) Disp

2 −0.265004 2.7 −0.262370 1.6
3 −0.255572 1.0 −0.267792 3.7
4 −0.267196 3.5 −0.268786 4.1
5 −0.268420 4.0 −0.268468 4.0
6 −0.268089 3.9 −0.268611 4.1

4The three Rs mentioned here correspond to regularization,
regression, and reweighting. The missing R in the first method
corresponds to regression done without any sort of reweighting.
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the numerical value at s ≈ 0.4, which is consistent
with our non-normality test as explained for Fig. 4.
As of now, we are not sure if this is a coincidence or
if there are sufficient mathematical grounds to justify
such a phenomenon.

Remark.—In theory, only samples drawn from popula-
tions of infinite variance will give rise to stable distributions
(instead of normal distributions) under the limit of a large
sample size. However, depending on the type of boot-
strapping method used, there are other types of distribution
in which a simple naïve bootstrapping method, like the one
we have employed, might fail. Furthermore, as shown in
[42], even for population distributions with infinite pop-
ulation variance that are suitably well behaved, we note that
the resulting distribution might not be that of a stable
distribution, but rather, a random distribution. Nonetheless,
the success of the naïve bootstrapping method for large
values of s indicates that we might not face issues that we
will with standard counterexamples to naïve bootstrapping
methods, such as the extreme order statistics but, rather, the
issue can be attributed to infinite population variance.

IV. GENERALIZATION TOMULTIDIMENSIONAL
INTEGRALS IN THE Uð1Þ THEORY

In this section, we will attempt to extend the method used
for the Uð1Þ one-link model to integrals on TN , N ≥ 1 with
more general actions. This includes the Uð1Þ lattice field
theory, whereN equals the number of links. As in Sec. II, we
will use fϕg to denote the collection of all the N variables
ϕ1;…;ϕN , and each ϕk is a variable in T . The action and the
observable will be denoted by SðfϕgÞ and OðfϕgÞ, respec-
tively. To extend the regularization to multidimensional
models, we adopt the uniform regularization in all directions,
that is, the regularized observable hOis is defined by

hOis ¼
1

Zs

Z
RN

OðfϕgÞ

× exp

�
−SðfϕgÞ − s

2

XN
j¼1

ϕ2
j

�
dϕ1 � � � dϕN; ð47Þ

with Zs defined by

Zs ¼
Z
RN

exp
�
−SðfϕgÞ − s

2

XN
j¼1

ϕ2
j

�
dϕ1 � � � dϕN: ð48Þ

The extension to multidimensional models is done by
generalizing Propositions 3.2–3.6 whenever possible, giving
the necessary proofs unless a given proposition generalizes
clearly.
We start off by generalizing Proposition 3.2 as follows:
Proposition 4.1. Suppose that both e−SðfϕgÞ and

OðfϕgÞ are C∞ functions on TN . Then it holds that

lim
s→0þ

hOis ¼ hOi:

Remark.—The smoothness of OðfϕgÞ and e−SðfϕgÞ
guarantees the interchangeability of the infinite sum
and the integrals. Similar to the one-dimensional case
(Proposition 3.2), the C∞ requirement can be weakened
to a certain Hölder class. However, this C∞ condition is
satisfied in most applications of the complex Langevin
method, due to the analytic extensibility of both functions
to the complexified space.
Proof.—The proof will largely mimic that of

Proposition 3.2. We can write down the multidimensional
Fourier series of OðfϕgÞ and e−SðfϕgÞ in the following
form:

OðfϕgÞ ¼
X

m⃗¼ðm1;…;mNÞ∈ZN

Ôm⃗ exp

�
i
XN
j¼1

mjϕj

�
;

e−SðfϕgÞ ¼
X

k⃗¼ðk1;…;kNÞ∈ZN

β̂k⃗ exp

�
i
XN
j¼1

mjϕj

�
: ð49Þ

In particular, analogous to Proposition 3.2, the C∞ regu-
larity allows for the interchange of the relevant infinite sum
and the N-dimensional integral. Thus, it is sufficient to only
consider integrals in the following form:

Z
RN

exp

�
i
XN
j¼1

mjϕj

�
exp

�
−SðfϕgÞ − s

2

XN
j¼1

ϕ2
j

�
dϕ1 � � � dϕN

¼
Z
RN

� X
k⃗¼ðk1;…;kNÞ∈ZN

β̂k⃗ exp

�
i
XN
j¼1

kjϕj

���YN
j¼1

eimjϕj−s
ϕ2
j
2

�
dϕ1 � � � dϕN;

¼
X

k⃗¼ðk1;…;kNÞ∈ZN

β̂k⃗

Z
RN

YN
j¼1

eiðmjþkjÞϕj−s
ϕ2
j
2 dϕ1 � � � dϕN;

¼
�
2π

s

�
N=2 X

k⃗¼ðk1;…;kNÞ∈ZN

β̂k⃗ exp

�
1

2s

XN
j¼1

ðmj þ kjÞ2
�
: ð50Þ
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Here we have again interchanged the summation and the integral, which can be justified by an argument similar to (18)
using the smoothness of e−SðfϕgÞ. Thus, we have

hOis ¼
1

Zs

�
2π

s

�
N=2 X

m⃗∈ZN

Ôm⃗

X
k⃗∈ZN

β̂k⃗ exp
�
−

1

2s

XN
j¼1

ðmj þ kjÞ2
�
; Zs ¼

�
2π

s

�
N=2X

k⃗∈ZN

β̂k⃗ exp
�
−

1

2s

XN
j¼1

k2j

�
; ð51Þ

from which we can obtain the limit

lim
s→0þ

hOis ¼
1

β̂
0⃗

X
m⃗∈ZN

Ôm⃗β̂−m⃗: ð52Þ

It remains to show that the right-hand side of (52) equals hOi. To this end, we write hOi as

hOi ¼ ð2πÞ−N RTN OðfϕgÞe−SðfϕgÞdfϕg
ð2πÞ−N RTN e−SðfϕgÞdfϕg : ð53Þ

By definition, it is clear that β
0⃗
is the (unweighted)5 mean value of e−SðfϕgÞ, which equals the denominator in (53). Since

OðfϕgÞe−SðfϕgÞ ¼
�X

k⃗∈ZN

Ôk⃗

YN
j¼1

eikjϕj

��X
k⃗∈ZN

βk⃗
YN
j¼1

eikjϕj

�
¼
X
k⃗∈ZN

�X
m⃗∈ZN

Ôm⃗βk⃗−m⃗

�YN
j¼1

eikjϕj ; ð54Þ

we see that the right-hand side of (52) is the Fourier
coefficient of the zero-frequency mode in the expansion of
OðfϕgÞe−SðfϕgÞ, and thus corresponds to the numerator in
(53). We have thus completed the proof. ▪
Next, we note the range of sðβÞ depends largely on the

functional form of SðfϕgÞ. Thus, Proposition 3.3 does not
generalize easily. Instead, we will proceed to generalize
Proposition 3.4. However, this is straightforward, as we only
have to replace jxj2with the sumof jϕjj2, as elaborated below:
Proposition 4.2. The following equality holds for all

s; s0 ≥ 0:

hOðfϕgÞis ¼
hOðfϕgÞ exp ðs0−s

2

P
N
j¼1 jϕjj2Þis0

hexp ðs0−s
2

P
N
j¼1 jϕjj2Þis0

: ð55Þ

As the proof is completely analogous to that in Proposition
3.4, we shall skip the proof.
We can also observe a similar phenomenon as

Proposition 3.5 for all possible SðfϕgÞ satisfying the
relevant conditions for uniform convergence of their
corresponding Fourier series. In particular, the following
proposition generalizes this.

Proposition 4.3. Let the action SðfϕgÞ and any observ-
ableO satisfying the conditions in Proposition 4.1 be given.
For any given k ∈ Zþ, we have

dk

dsk
hOis

����
s¼0

¼ 0: ð56Þ

Proof.—As the proof for this proposition is largely
similar to that in Proposition 3.5, we will sketch the key
differences here. From (51), we have hOis ¼ f1ðsÞ=f2ðsÞ,
where

f1ðsÞ ¼
X
m⃗∈ZN

Ôm⃗

X
k⃗∈ZN

βk⃗ exp

�
−

1

2s

XN
j¼1

ðmj þ kjÞ2
�
;

f2ðsÞ ¼
X
k⃗∈ZN

βk⃗ exp

�
−

1

2s

XN
j¼1

k2j

�
: ð57Þ

The structure of this function is similar to (37), and we can
use exactly the same approach to prove that all the
derivative at s ¼ 0 vanishes. Here the interchangeability
of the derivative and the series follows the fact that both O
and S are infinitely, so that the coefficients Ôk⃗ and βk⃗ decay

faster than 1=jk⃗jα for any α > 0. ▪
Based on the expression (57), it is straightforward to

derive the following proposition, which is similar to
Proposition 3.6.

5Here, “unweighted” mean of an expression f refers to

hfiunweighted ¼
R
D
fðxÞdxR
D
1dx

, where D is the appropriate domain for

consideration. One can compare this expression to the expression
for weighted means as in (47) and (48).
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Proposition 4.4. For any observable O satisfying the
conditions as stated in Proposition 4.1, there exist coef-
ficients ak and bk for all k ∈ N such that

hOis ¼
P∞

k¼0 ake
− k
2sP∞

k¼0 bke
− k
2s

: ð58Þ

Note that a key difference between (57) and (37) is that
the sum over the components

P
N
j¼1 does not exist in the

one-link model. In fact, the integer
P

N
j¼1 k

2
j can take any

value from 0 to N, so that when N is large, the zero terms in
both summations in (58) will appear only for a large k. To
accommodate for such cases, we have included all possible
integer coefficients of − 1

2s instead as shown in (58).
In view of the proposition above, an appropriate regres-

sion model is given by

hOis ¼
P

M
k¼0 ake

− k
2s

1þPM
k¼1 bke

− k
2s

: ð59Þ

Note that for any model under the Uð1Þ lattice field theory
framework, similar to the regression model in (45), we can
minimize a similar objective function as described in (46)
to obtain the corresponding regression coefficients.

V. EXTENSION TO THE SUðnÞ THEORY

This section introduces how we can extend results from
the previous sections to the SUðnÞ theory, and presents
results for the one-dimensional problems. Before we
introduce the regularization method in SUðnÞ theory, we
will briefly review the complex Langevin method under the
SUðnÞ gauge theory.
Consider the set fUk∶k ¼ 1;…; Ng ∈ ½SUðnÞ�N , where

N is the total number of lattice points. Given the action
SðfUgÞ, the expectation value for the observable OðfUgÞ
is given by

hOi ¼
R
½SUðnÞ�N OðfUgÞ expð−SðfUgÞdfUgR

½SUðnÞ�N expð−SðfUgÞdfUg : ð60Þ

Let wa;k for a ¼ 1;…; n2 − 1 be independent Brownian
motions. Upon complexifying the configuration space
½SUðnÞ�N to ½SLðn;CÞ�N , the complex Langevin method
for SUðnÞ theory can be described by the complex
stochastic process:

dUk ¼ −
Xn2−1
a¼1

iλa½UkDa;kSðfUgÞdtþ Uk∘dwa;k�;

Uk ∈ SLðn;CÞ; k ¼ 1;…; N; ð61Þ
where ∘ stands for the Stratonovich interpretation of the
stochastic integral and λa, a ¼ 1;…; n2 − 1 are the infini-
tesimal generators of the SUðnÞ group satisfying the
orthogonality

trðλaλbÞ ¼ 2δab; ∀ a; b ¼ 1;…; n2 − 1;

and Da;k denotes the left Lie derivative operator defined as

Da;kSðfUgÞ ¼ lim
ϵ→0

SðfŨϵgÞ − SðfUgÞ
ϵ

; ð62Þ

where fŨϵg denotes the field with links defined by

Ũϵ
l ¼ expðiϵδklλaÞUl; l ¼ 1;…; N:

To solve (61), we mimic standard methods and apply the
following scheme to update the links as follows:

Uðjþ1Þ
k ¼ exp

�
−
Xn2−1
a¼1

iλaðDa;kSðjÞΔtþ ηa;k
ffiffiffiffiffiffi
Δt

p
Þ
�
UðjÞ

k ;

k ¼ 1;…; N; ð63Þ

where UðjÞ
k is the link at time instance tj, Δt ¼ tjþ1 − tj is

time step and each ηa;k is normally distributed with mean 0
and variance 2. The scheme is similar to the Euler-
Maruyama method, while the exponential map is applied
to keep the solution from leaving the Lie group.
Below, we will generalize the techniques of regulariza-

tion, reweighting, and regression to the SUðnÞ group theory.
They will be introduced in the following three subsections.

A. Regularization

To demonstrate how the regularization can be general-
ized to the SUðnÞ theory, we would like to restate the
method for the Uð1Þ theory in the language of group
theories. Here we regard Uð1Þ as the unit circle on the
complex plane, so that we can establish the one-to-one map
between U ∈ Uð1Þ and x ∈ T by U ¼ expðixÞ. Thus, we
can write down the integrals over T as integrals over Uð1Þ.
For instance,

Z ¼
Z
T
expð−SðxÞÞdx

¼
Z
Uð1Þ

expð−Sð−i logUÞÞdU; ð64Þ

where we have assumed that Sð·Þ is periodic with period 2π,
so that the value of Sð−i logUÞ is unique. In Eq. (64), we
can also consider logU as an element in the Lie algebra of
Uð1Þ, i.e., g ¼ iR. When we apply the regularization, an
extra term sx2=2 is added to the action, whose counterpart
should be −sðlogUÞ2=2 if we represent the regularization
term using the variable in Uð1Þ. However, since sx2=2 is
no longer periodic with respect to x, the expression
−sðlogUÞ2=2 becomes multivalued, so simply adding this
term to the action will cause ambiguities.
To address this problem, we can rewrite (11) and (12) in

the following form:

REGULARIZATION OF THE COMPLEX LANGEVIN METHOD PHYS. REV. D 105, 014508 (2022)

014508-13



hOis ¼
1

Zs

Z
Uð1Þ

Oð−i logUÞ
X
g∈g

s:t: expðgÞ¼U

exp

�
−Sð−i logUÞ þ sg2

2

�
dU;

Zs ¼
Z
Uð1Þ

X
g∈g

s:t: expðgÞ¼U

exp

�
−Sð−i logUÞ þ sg2

2

�
dU: ð65Þ

Here the summation is taken over all logarithms of U, corresponding to unrolling the torus T to the real axis R. Our
generalization of the regularization to the SUðnÞ theory will be based on the form of (65).
Formally, for the SUðnÞ theory, the regularized action can be written as

SsðfUgÞ ¼ SðfUgÞ − s
2

XN
k¼1

tr½ðlogUkÞ2�; ð66Þ

where logUk is an element in the Lie algebra suðnÞ. Here the regularization term is chosen as the trace of the matrix square
since its square root defines a norm on suðnÞ. However, the ambiguity again comes from the nonuniqueness of the matrix
logarithm. Therefore, we mimic (65) to write down the regularized observable as

hOis ¼
1

Zs

Z
½SUðnÞ�N

OðfUgÞ
X

g1∈suðnÞ
s:t: expðg1Þ¼U1

� � �
X

gN∈suðnÞ
s:t: expðgN Þ¼UN

exp
�
−SðfUgÞ þ

XN
k¼1

s
2
trðg2kÞ

�
dU;

Zs ¼
Z
½SUðnÞ�N

X
g1∈suðnÞ

s:t: expðg1Þ¼U1

� � �
X

gN∈suðnÞ
s:t: expðgN Þ¼UN

exp

�
−SðfUgÞ þ

XN
k¼1

s
2
trðg2kÞ

�
dU: ð67Þ

Following the idea in Proposition 3.2, it is expected that
when s → 0þ, the regularized observable hOis will con-
verge to hOi in (60). We leave the rigorous proof as our
further work and we focus on the implementation of the
regularized method for SUðnÞ theory in this section.
To formulate the complex Langevin method for the

complexified action (66), we need to first formulate the
Langevin method for real actions. The general idea of
the numerical scheme follows (63), while the derivative of
the action Da;kS should be replaced with Da;kSs defined by

Da;kSsðfUgÞ¼Da;kSðfUgÞ

−
s
2
lim
ϵ→0

tr½ðlogðeiλaϵUkÞÞ2−ðlogUkÞ2�
ϵ

: ð68Þ

The numerical scheme is fully determined once the Lie
derivative is determined. Meanwhile, the generalization to
the complex action follows naturally as the formula of the
numerical scheme is unchanged, and each link Uk auto-
matically falls into the complexification of SUðnÞ, i.e., the
special linear group SLðn;CÞ. Below, we will focus on
the computation of (68) with Uk ∈ SLðn;CÞ and resolve
the complication caused by the multivalued logarithmic
function.
In (68), gk ≔ logUk can take any matrix logarithm of

Uk, while logðeiλaϵUkÞ must be the matrix logarithm that is

closest to gk such that the limit exists. The value of the limit
is given in the following proposition:
Proposition 5.1. For any Uk ∈ SLðn;CÞ, it holds that

lim
ϵ→0

tr½ðlogðeiλaϵUkÞÞ2 − ðlogUkÞ2�
ϵ

¼ 2i trðλa logUkÞ:

Proof.—Since trðA2 − B2Þ ¼ trðAþ BÞðA − BÞ for any
matrices A and B, we can simplify the limit as follows:

lim
ϵ→0

tr½ðlogðeiλaϵUkÞÞ2− ðlogUkÞ2�
ϵ

¼ lim
ϵ→0

tr

�
½logðeiλaϵUkÞþ logUk�

logðeiλaϵUkÞ− logUk

ϵ

�
;

¼ 2lim
ϵ→0

tr

�
logUk

logðeiλaϵUkÞ− logUk

ϵ

�
: ð69Þ

Let Δϵ
1 ¼ logðeiλaϵUkÞ − logUk and

Δϵ
iþ1 ¼ ½logUk;Δϵ

i � ¼ ðlogUkÞΔϵ
i − Δϵ

i ðlogUkÞ;
i ¼ 1; 2;…: ð70Þ

It can be derived from the cyclic property of the matrix trace
that
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tr½ðlogUkÞΔϵ
iþ1�¼ tr½ðlogUkÞ2Δϵ

i −ðlogUkÞΔϵ
i ðlogUkÞ�¼0;

i¼1;2;…: ð71Þ
According to the differential formula of the exponential
map [43, Theorem 5], we have

Xþ∞

i¼1

ð−1Þiþ1

i!
Δϵ

i ¼ U−1
k eiλaϵUk − I þOðϵ2Þ

¼ iϵU−1
k λaUk þOðϵ2Þ:

Using (71), we can left multiply the above equation by
logUk and then take the trace to obtain

tr½ðlogUkÞΔϵ
1� ¼ iϵ tr½ðlogUkÞU−1

k λaUk� þOðϵ2Þ
¼ iϵ trðλa logUkÞ þOðϵ2Þ: ð72Þ

Inserting this equation into (69) concludes the proof. ▪
By this proposition, the drift term (68) becomes

Da;kSsðfUgÞ ¼ Da;kSðfUgÞ − is trðλa logUkÞ; ð73Þ

based on which the update of the links (63) becomes

Uðjþ1Þ
k ¼ exp

�
−
Xn2−1
a¼1

iλaðDa;kSðjÞΔt − is trðλa logUðjÞ
k ÞΔtþ ηa;k

ffiffiffiffiffiffi
Δt

p
Þ
�
UðjÞ

k ; k ¼ 1;…; N; ð74Þ

where the underlined term produces a pullback
velocity so that the excursion away from SUðnÞ can be
restricted.
We now consider the determination of gk ¼ logUk. We

first assume that Uk is diagonalizable, i.e., Uk ¼ RΘR−1

for some R ∈ SLðn;CÞ and Θ ¼ diagðθ1;…; θnÞ. Then

gk ¼ logUk ¼ logðRΘR−1Þ ¼ RðlogΘÞR−1: ð75Þ

The nonuniqueness of gk comes from the nonuniqueness
of logΘ. If Ξ ¼ diagðξ1;…; ξnÞ is a diagonal matrix
satisfying

expðξiÞ ¼ θi; i ¼ 1;…; n and
Xn
i¼1

ξi ¼ 0; ð76Þ

then for any K1;…; Kn ∈ Z satisfying K1 þ � � � þ Kn ¼ 0,
we have

expðΞþ 2πiΓÞ ¼ Θ; ð77Þ

where Γ ¼ diagðK1;…; KnÞ. Hence, the matrix RðΞþ
2πiΓÞR−1 is a candidate of gk. Note that here we require
trΞ ¼ trΓ ¼ 0 since gk is required to be an element in
slðn;CÞ, which contains all traceless n × n matrices. If Uk
is nondiagonalizable, thenΘwill contain Jordan blocks and
Ξ becomes an upper-triangular matrix. Nonetheless, the
relation (77) still holds and still plays the role that leads to
multiple values of matrix logarithms.
To resolve this issue, we would like to determine a

specific ΞðjÞ
k for each j and k such that the diagonal of

expðΞðjÞ
k Þ consists of all the eigenvalues of Uk, which will

further determine the matrix logarithm. In order to maintain

the continuity of the dynamics, we choose Ξðjþ1Þ
k by

minimizing its difference from ΞðjÞ
k . In other words, we

determine Ξðjþ1Þ
k via

Ξðjþ1Þ
k ¼ argminΞ∈Cn×nkΞ − ΞðjÞ

k kF;
s:t:Ξ is a Jordan normal form and ∃R ∈ Cn×n such that expðRΞR−1Þ ¼ Uðjþ1Þ

k : ð78Þ

When j ¼ 0, we simply choose Ξð0Þ
k such that the

imaginary parts of all its diagonal elements locate in
½−π; πÞ. Here, we comment that due to the existence of

the stochastic term, Ξðjþ1Þ
k may be distant from ΞðjÞ

k . Thus,
our strategy does not produce the “correct” choice of

Ξðjþ1Þ
k . However, such a probability decreases exponen-

tially as Δt decreases, which will not affect the order of
accuracy for the numerical method. Note that in this

approach, we need to keep track of the evolution of ΞðjÞ
k ,

which guarantees that the summations in (67) are taken into
account.
To summarize, we describe the algorithm of the complex

Langevin method for the SUðnÞ theory below.
Like in the regularized Uð1Þ theory, when the regulari-

zation parameter s is small, the regularized method may
still converge to biased results. Our improvements, includ-
ing reweighting and regularization, will be studied in the
following two subsections.
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B. Reweighting

The idea of reweighting follows from our motivating
example, as in (35). We represent the observable hOis as

hOis ¼
hO expðSs0 − SsÞis0
hexpðSs0 − SsÞis0

; ð79Þ

where

Ss0 − Ss ¼ −
s0 − s
2

XN
k¼1

tr½ðlogUkÞ2� ð80Þ

according to the definition (66). To compute the numerator
and the denominator of (79), Algorithm 1 can still be
applied, and the logarithms in (80) can still be found by

using ΞðjÞ
k at each time step [see (78)]. However, when N is

large, the value of Ss0 − Ss in (80) might be a large
positive number if s0 > s [note that tr½ðlogUkÞ2� < 0�.
Consequently, its exponent expðSs0 − SsÞ will be so huge
that it will be difficult to handle using double-precision
floating-point numbers. Therefore, we shift Ss0 − Ss by its
average, so that (79) can be computed as

hOis ¼
hO expðSs0 − Ss − hSs0 − Ssis0Þis0
hexpðSs0 − Ss − hSs0 − Ssis0Þis0

: ð81Þ

This requires us to record the values of O and Ss0 − Ss for
each sample, so that we can first compute hSs0 − Ssi, and
then use the result to evaluate (81). In our tests, the
magnitude of the shifted exponents turns out to be
acceptable after applying such a trick.

C. Regression

For the Uð1Þ theory, the expression we used in the
regression has a fractional form (58), which is derived
based on the Fourier expansion of functions on Uð1Þ.
Similarly, for the SUðnÞ theory, suppose that ψk, k ¼
1; 2;… form an orthonormal set of basis:

Z
SUðnÞ

ψkðUÞψ lðUÞdU ¼ δkl: ð82Þ

Then the expression used in the regularization can be
determined by computingZ
SUðnÞ

ψkðUÞ
X
g∈suðnÞ

s:t: expðgÞ¼U

exp
�
s
2
trg2
�
dU; k ¼ 1; 2;…: ð83Þ

For the SUð2Þ theory, the integral (83) can be calculated
using the isomorphism between SUð2Þ and the three-sphere
S3. The basis functions ψkðUÞ can be chosen as the
generalized spherical harmonics defined on S3, which
are denoted by Yl1l2l3ðψ ; θ;φÞ with ðψ ; θ;φÞ being the
hyperspherical coordinates. The precise form of Yl1l2l3 can
be found in [44]. To compute the integral, we write (83) as
an integral on the three-dimensional linear space suð2Þ.
With proper changes of variables, the integral (83) can be
transformed into

Il1l2l3 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 þ 1

4π

ðl2 þ l1Þ!
ðl2 − l1Þ!

s Z
R

Z
R

Z
R

�
g1 þ ig2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p �
l1
P−l1
l2

�
g3
jgj
�
Ql2

l3
ðsin jgj; cos jgjÞ
jgj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p exp ð−sjgj2Þdg1dg2dg3; ð84Þ

where jgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22 þ g23

p
, and P−l1

l2
ð·Þ is the associated Legendre function. Here g1, g2, g3 can be considered as the

coefficients of the Pauli matrices σ1, σ2, σ3 when representing the elements in suð2Þ. Since trðσiσjÞ ¼ 2δij, we get s instead

of s=2 as the parameter in the exponent of (84), which differs slightly from the Uð1Þ theory. The polynomial Ql2
l3
ð·; ·Þ,

l3 ≥ l2 ≥ 0 has degree l3, and is defined by the recurrence relations

Ql2
l3þ1ðx; yÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þ 2Þðl3 þ 1Þ

ðl3 − l2 þ 1Þðl3 þ l2 þ 2Þ

s
yQl2

l3
ðx; yÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þ 2Þðl2 þ l3 þ 1Þðl3 − l2Þ
l3ðl3 − l2 þ 1Þðl3 þ l2 þ 2Þ

s
Ql2

l3−1ðx; yÞ;

Algorithm 1. Complex Langevin method for the regularized
action.

Input: Initial field fUð0Þg, time step Δt, total number of time
steps J, number of time steps to reach the invariant
measure J0, number of time steps between two
samples ΔJ

1 Set j ← 0, Nsample ← 0 and hOis ← 0;
2 For each k, let Ξk be the diagonal matrix with diagonal

elements being the logarithms of the eigenvalues of Uð0Þ
k , and

compute its logarithm logUð0Þ
k ¼ RΞð0Þ

k R−1;
3 for j ← 0 to J do
4 j Use the result of logUð0Þ

k to evolve the solution by (74);
5 j if j > J0 then
6 j j hOis ← hOis þOðfUðjþ1ÞgÞ;
7 j � J0 ← J0 þ ΔJ, Nsample ← Nsample þ 1;
8 ��Compute Ξðjþ1Þ

k for each k according to (78), and find

logUðjþ1Þ
k based on the result of Ξðjþ1Þ

k ;
9 hOis ← hOis=Nsample;

Output: hOis
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with the initial condition

Ql3
l3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l3 þ 2Þ!!
ð2l3 þ 1Þ!!

s
xl3ffiffiffi
π

p :

The recurrence relation shows that Ql2
l3
ðx; yÞ has the form xl2Rl2

l3
ðyÞ, where Rl2

l3
ð·Þ is a polynomial of degree l3 − l2.

For the three-dimensional integral (84), one can use spherical coordinates to further simplify it. Upon integrating out the
spherical angles, we obtain

Il1l2l3 ¼
(

π2

22l2

ffiffiffiffiffiffiffiffiffi
2l2þ1
4π

q �
l2
l2=2

�
2 Rþ∞

0 ðsin gÞl2Rl2
l3
ðcos gÞ expð−sg2Þdg; if l1 ¼ 0 and l2 is even;

0; otherwise:

When l1 ¼ 0 and l2 is even, we define the polynomial R̄l2
l3
ðxÞ ¼ ð1 − x2Þl2=2Rl2

l3
ðxÞ. Then, we have

Il1l2l3 ¼
π2

22l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 þ 1

4π

r �
l2
l2=2

�
2
Z þ∞

0

R̄l2
l3
ðcos gÞ expð−sg2Þdg; l1 ¼ 0 and l2 is even:

The integral above is the linear combination of s−1=2e−
k2
4s ,

k ¼ 0; 1;…; l3. Thus, similar to Propositions 4.1 and 4.2,
we conclude that in the SUð2Þ theory, the regularized
observable hOis has the form

hOis ¼
Pþ∞

k¼0 ake
− k
4sPþ∞

k¼0 bke
− k
4s

: ð85Þ

This expression can then be used in the regression model
via a truncation of both infinite series.
For the SUðnÞ theory with n > 2, we have not found a

straightforward way to evaluate the integral (83). Instead,
we conjecture that the form (85) holds for all the SUðnÞ
theories, and we will use the approximation

hOis ¼
P

M
k¼0 ake

− k
4s

1þPM
k¼1 bke

− k
4s

ð86Þ

in our regression model when carrying out numerical tests.
Remark.—Although the precise form of hOis remains

unclear, it is reasonable to believe that hOis is also non-
analytic at s ¼ 0 in the SUðnÞ theory. Similar to the Uð1Þ
theory, both integrals in the definition of hOis [see (67)] can
be written as the integral ofQðfUgÞ exp ðPN

k¼1
s
2
g2kÞ, where

QðfUgÞ is defined on the compact group ½SUðnÞ�N , which
can be decomposed into the linear combination of count-
able discrete “Fourier modes.” Here each “Fourier mode”
can be understood as an eigenfunction of the Laplace-
Beltrami operator on ½SUðnÞ�N . Meanwhile, when s
approaches zero, the exponential part approaches a con-
stant, meaning that in the frequency space, this function
approaches a Dirac delta function at the zero point. This
implies that s should appear in the denominator inside the

exponential function. In addition, the factor QðfUgÞ
spreads the Dirac-like function of frequency to all the
discrete modes. With this understanding, we think the
postulate (85) for all SUðnÞ theories is sensible, although it
is possibly up to a scalar multiple in the exponent.

VI. APPLICATIONS IN THE LATTICE
FIELD THEORY

We are now ready to carry out numerical simulations for
the lattice field theories. For the D-dimensional lattice, the
each lattice point is denoted by a periodic multi-index

x ∈ X ≔ ðZ=l0ZÞ × � � � × ðZ=lD−1ZÞ; ð87Þ

where li refers to the length of the lattice in the ðiþ 1Þth
component of x. For a scalar field fϕg, the variables will be
denoted as ϕx; for a vector field fUg, we denote the
variables using Ux;μ, where μ ∈ f0; 1;…; D − 1g. For
simplicity, we use x� μ̂ to denote the multi-index that
adds/subtracts the μth component of x by 1. For instance,

xþ 0̂ ¼ ðx0 þ 1; x1;…; xD−1Þ;
x − 1̂ ¼ ðx0; x1 − 1;…; xD−1Þ: ð88Þ

In what follows, three models in the lattice field theory will
be studied. In order to achieve better results from regres-
sion, we will derive more suitable regression models for
specific problems whenever possible.

A. 3D XY model

For the 3D XY model, we have D ¼ 3 and its action
reads

REGULARIZATION OF THE COMPLEX LANGEVIN METHOD PHYS. REV. D 105, 014508 (2022)

014508-17



SðfϕgÞ ¼ −β
X
x∈X

X2
ν¼0

cosðϕx − ϕxþν̂ − iμδν;0Þ; ð89Þ

where the field variables ϕx ∈ T , and μ is the chemical
potential. For simplicity, we shall work with the assumption
that the length of the lattice l in each dimension to be equal,
that is l ¼ li for i ∈ f0; 1; 2g. Note that one can attempt to
generalize some of the arguments to lattices with differing
lattice sizes in each dimension with a somewhat similar
argument. For a scalar field, the size of the lattice, denoted
by N ¼ l3, corresponds to the number of field variables we
will be considering in our integration. When Re μ ≠ 0, the
action becomes complex, and the complex Langevin
method is applied to solve this model. This method fails
even for small μ in this model [17,34], and its failure was
carefully analyzed in [34], with the effect of the boundary
terms being discussed in [26]. Furthermore, according to
our numerical experiments, the complex Langevin dynam-
ics diverges even for a simple Euler-Maruyama method
without any modifications such as using adaptive time-
stepping algorithms. In addition, to impose the presented
regularization method on this model, we simply add the
regularization term − s

2

P
x ϕ

2
x with s > 0 as discussed

in Sec. IV.
For this model, the complex drift force corresponding to

the variable ϕx upon regularization is given by

Kx;s ¼ −
∂Ss
∂ϕx

¼ −β
X2
ν¼0

½sinðϕx − ϕxþν̂ − iμδν;0Þ

þ sinðϕx − ϕx−ν̂ þ iμδν;0Þ� − sϕx: ð90Þ

We will mainly focus on two observables: the action
density

hSi ¼ −β
∂ lnZ
∂β

¼ −β
	X

x

X2
ν¼0

cosðϕx − ϕxþν̂ − iμδν;0Þ



ð91Þ

and the number density

hni ¼ ∂ lnZ
∂μ ¼

	
iβ
X
x

sinðϕx − ϕxþ0̂ − iμÞ


: ð92Þ

As part of the general framework for Uð1Þ lattice field
theory, we can expect Propositions 4.1–4.4 to hold. What
remains is to determine an equivalent interval of s depend-
ing on a given β and μ such that we are guaranteed correct
convergence. In addition, for this specific model, we are
able to derive a better regression model as compared to the

general model in Proposition 4.4. The former is summa-
rized in a proposition that follows.
Proposition 6.1. Let β and μ be given. Let η0 be the

smallest real number such that the following inequality
holds

ðejμj þ 2ÞYðη0; μÞ − ðe−jμj þ 2ÞYðη0; μÞ−1
− η0 log ðYðη0; μÞÞ ≤ 0; ð93Þ

whereby

Yðη; μÞ ¼
ηþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 4ðejμj þ 2Þðe−jμj þ 2Þ

q
2ðejμj þ 2Þ :

Then, if s > 2η0β, the imaginary part of the field fϕIg is
bounded for any realization of the complex Langevin
dynamics.
Here, by following the notation in (2) and (14), the first

index in the subscript of Kx;s represents the drift term for
the corresponding scalar field ϕx, while s in the second
index indicates that this drift term is obtained from a
regularized action.
Proof.—We begin the proof by decomposing the drift

term in (90) as follows:

KR
x;s ¼ −β

X2
ν¼0

½sin ðϕR
x − ϕR

xþν̂Þ cosh ðϕI
x − ϕI

xþν̂ − μδν;0Þ

þ sin ðϕR
x − ϕR

x−ν̂Þ cosh ðϕI
x − ϕI

x−ν̂ þ μδν;0Þ� − sϕR
x ;

KI
x;s ¼ −β

X2
ν¼0

½cos ðϕR
x − ϕR

xþν̂Þ sinh ðϕI
x − ϕI

xþν̂ − μδν;0Þ

þ cos ðϕR
x − ϕR

x−ν̂Þ sinh ðϕI
x − ϕI

x−ν̂ þ μδν;0Þ� − sϕI
x:

ð94Þ

Following a similar strategy as to Proposition 3.3 but in a
generalized case, we need to show that for s large enough,
the support of the probability density in the imaginary
variables ϕI is compact. Thus, we do so by first removing
any dependence in fϕRg by finding an upper bound forKI

x;s

for a given x ∈ X that holds for all ϕR
x . An instructive upper

bound for KI
x;s would be

KI
x;s ≤ β

X2
ν¼0

ðsinhðjϕI
xj þ jϕI

xþν̂j þ jμδν;0jÞ

þ sinhðjϕI
xj þ jϕI

x−ν̂j þ jμδν;0jÞÞ − sϕI
x: ð95Þ

Let KI
x;s be the right-hand side of the inequality above,

which only depends on the imaginary part of the field

variables fϕIg. Note that KI
x;s can be viewed as a function

on RN . As a generalization to Proposition 3.3, we will need
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to find an N-dimensional object H that contains the origin6

such that, along the boundary of the object ∂H, we have7X
x∈X

KI
x;s · n̂xj∂H < 0; ð96Þ

where fn̂g represents the outward-oriented unit vector
normal of the surface ∂H. For this proof, our choice of
H would be an N-dimensional hypercube centered at the
origin with length 2C in each dimension. Here, we reserve
the freedom of choice on C > 0, which would be chosen to
close the proof for this proposition. We note that the
surfaces of this hypercube are (N − 1)-dimensional finite
planes given by

Π�
x ¼ffϕIg∈RN jϕI

x ¼�C and ∀y≠ x; jϕI
yj<Cg ð97Þ

with a total of 2N of such planes, indexed by a sign on its
superscript and x ∈ X corresponding to the imaginary part
of the field variable ϕx in which the value of C is achieved.
Note that since the outward oriented unit vector normal to
Π�

x only has a component in the x direction and that
KI

x;s ≤ KI
x;s, it is sufficient to show that KI

x;sðfϕjΠþ
x
gÞ < 0 if

ϕI
x ¼ þC and KI

x;sðfϕjΠþ
x
gÞ > 0 if ϕI

x ¼ −C for all x.
Thus, applying the relevant inequalities from (97) for
Πþ

x , we have

KI
x;sjΠþ

x
< β

X2
ν¼0

ðsinhðjϕI
xj þ jϕI

xþν̂j þ jμδν;0jÞ

þ sinhðjϕI
xj − jϕI

x−ν̂j þ jμδν;0jÞÞ − sϕI
x

< βð2 sinhð2Cþ jμjÞ þ 4 sinhð2CÞÞ − sC

≔ KI
upper: ð98Þ

Thus, KI
x;sjΠþ

x
< 0 if KI

upper ≤ 0. Thus, for a given β, s, and
μ, we can conduct a one variable optimization on C and
deduce that KI

upper is minimized at C ¼ C1 with

C1 ¼
1

2
log

 s
2β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð s
2βÞ2 − 4ðejμj þ 2Þðe−jμj þ 2Þ

q
2ðejμj þ 2Þ

!
: ð99Þ

A remark here is that minimization is consistent with the
fact that we can utilize the freedom of choice of C for any
given β, μ, and s. Thus, we want to lower the upper bound
of KI

upper as much as possible so that KI
upper < 0 can be

achieved with a smaller value of s. This is analogous to
picking the choice of y0 in the Uð1Þ one-link model in

Proposition 3.3. Substituting C1 to the expression of

KI
upperjΠþ

x
in (98) yields

KI
upperjΠþ

x
¼ βððejμj þ 2ÞYðη; μÞ − ðe−jμj þ 2ÞYðη; μÞ−1
− η logðYðη; μÞÞÞ; ð100Þ

where Yðη; μÞ is as defined in (93) and η ≔ s
2β. Thus,

demanding KI
upper ≤ 0 is equivalent to solving the inequal-

ity as described in (93). In other words, we describe the
minimum value in which (93) holds as η0. Thus, this is
equivalent to

η ¼ s
2β

≥ η0;

and thus s ≥ 2η0β. Alternatively, we can just choose
s > 2η0β. A symmetric and analogous argument holds
for the case of Π−

x and for all x. This concludes the proof. ▪
Furthermore, as promised, we will attempt to obtain a

better regression model as compared to that in (58),
summarized in the following proposition:
Proposition 6.2. We consider the 3D XY model for the

action density and the number density observables as
defined in (91) and (92). For both observables, we can
improve the representation of hOis to

hOis ¼
P∞

k¼0 ake
−k
sP∞

k¼0 bke
−k
s

: ð101Þ

Proof.—It is obvious that both observables and the action
are C∞ functions. Thus the derivations in the proof of
Proposition 4.1 work in the 3D XY model. By observing
that the action S and the number density n on a discrete
lattice takes the form of a difference in two neighboring
field variables ϕx − ϕxþν̂ as compared to individual field
variables, we thus rework some of the steps in (50). For the
3D XY model, with the action given in (89), we can rewrite
the exponentiation of the negative of it as

e−SðfϕgÞ ¼
Y
x∈X

Y2
ν¼0

eβ cosðϕx−ϕxþν̂−iμδν;0Þ

¼
Y
x∈X

Y2
ν¼0

X
m∈Z

½imemμδν;0Jmð−iβÞ�eimðϕx−ϕxþν̂Þ

¼
X
k⃗∈K

βk⃗e
i
P

x∈X
kxϕx ; ð102Þ

where we have again used the Jacobi-Anger expansion (16)
and the resultant Fourier series with its coefficients repre-
sented by βk⃗ is analogous to that in the second line of
Eq. (50). Here the range of the summation K is given as a
proper subset of ZN defined by

6This condition is necessary since all our complex Langevin
simulations always starts from the origin.

7In the one-link model, the one-dimensional object is the line
segment ½Y−; Yþ� that contains the origin 0, with the boundary
being the points y ¼ Yþ and y ¼ Y−.
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K ¼
�
k⃗ ∈ ZN∶

X
x∈X

kx ¼ 0

�
:

The appearance ofK can be explained as follows. Since the
inner sum represents different Fourier frequency modes for
ϕx − ϕxþν̂, with each satisfying the fact that

P
x∈X kx ¼ 0,

and the fact that the product of exponentials is given by the
exponential of the sum of the individual arguments, such a
property is preserved in the resulting Fourier series, and
thus have the given property for K. Here, we note that the
observables n or S follow a similar structure. This thus
implies that, analogous to (51) and (57), we have

hOis ¼
1

Zs

X
m⃗∈K

X
k⃗∈K

Ôm⃗βk⃗ exp

�
−

1

2s

X
x∈X

ðmx þ kxÞ2
�
;

Zs ¼
X
k⃗∈K

βk⃗ exp

�
−

1

2s

X
x∈X

k2x

�
: ð103Þ

For every k⃗ ∈ ZN, the sum
P

x∈X k
2
x is odd/even if and

only if
P

x∈X kx is odd/even since k2x and kx always share

the same parity. Then for k⃗ ∈ K, we know that
P

x∈X k
2
x is

even so that in (103), each exponential term in the series
expansion of Zs has the form expð−l=sÞ for some l ∈ Z,
where the factor 2 drops off by reduction of the fraction.

The same can be done to the expansion of hOis since
m⃗þ k⃗ ∈ K, which leaves with us the expression in (101). ▪
Remark.—We note that the concept of counting the

parity of kx and mx is inspired by the representation of
the partition function into bonds as proposed by the Worm
algorithm in [45,46].
With reference to the above proposition, the appropriate

regression model is thus given by

hOis ¼
P

M
k¼0 ake

−k
s

1þPM
k¼1 bke

−k
s

; ð104Þ

for a given integer M.
We apply the above regression model to two examples

on a 8 × 8 × 8 lattice with parameters β ¼ 0.2; μ ¼ ffiffiffiffiffiffiffi
0.1

p
and β ¼ 0.7; μ ¼ ffiffiffiffiffiffiffi

0.1
p

, respectively, for the two observ-
ables of interest, the number density scaled with the
chemical potential μn, and the action density S. Similar
to the Uð1Þ one-link model, we will compare the numerical
results obtained with that from standard methods from
current literature. The results for the 2R method are
summarized in Fig. 6 and Table II.
Here, we summarize some of the key points from Table II

as follows. First, we note that the range of s used might not
be consistent with what is obtained in Proposition 4.4, s0 >
2η0β ¼ 2ð7.8Þð0.2Þ ¼ 3.12 for β ¼ 0.2 and μ ¼ ffiffiffiffiffiffiffi

0.1
p

,
while we have included points as close as s ¼ 0.6 in our

FIG. 6. Number density (left) and action density (right) for β ¼ 0.2 (top) and 0.7 (bottom) of 3D XY model.M represents the number
of expansion terms used for extrapolation (101).
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regression. Next, we note that the results obtained from our
2R method are similar to those obtained from the original
complex Langevin method. Although they might not do as
well as compared to the corrected complex Langevin
method from [26] and the worldline method, the results
obtained are still not too far off from these methods.
Furthermore, we note that the results obtained using
different values of M for the 2R method are generally
stable, while according to our simulations, the original
complex Langevin method for s ¼ 0 suffers from insta-
bilities, and the result of the original complex Langevin
method from [26] may require adaptive time stepping.
Nonetheless, one should note that by picking s ¼ 0.6, a
value which is way off from our guaranteed region of
s > s0, there might be an unquantifiable bias that possibly
grows as we pick values of s closer to 0. Such a possibility
is inferred for the case of theUð1Þ one-link model, in which
the difference between the true value and the complex
Langevin method grows significantly as s falls below a
certain threshold s1 (≈0.4 < s0) and gets larger as it
approaches 0. Despite the inability to obtain a result of
better accuracy as compared to the worldline and the
corrected complex Langevin method, the relatively simple
structure and the improved generalizability of the 2R
method might still serve as a method that we can use to
corroborate with alternative methods in the current
literature.
Next, we shall explain the rationale of choosing the 2R

method over the 3R method despite the latter having better
success with the Uð1Þ one-link model. Recall that for our
3R method, we will have to choose a reference s0. From
Fig. 7, we can observe that the estimates for Reμhni
without regression is better for s0 ¼ 0.6 at 0.005666 as
compared to that in s0 ¼ 3.2 at 0.01498. Here, better is
defined as how close our results are to the results generated
from the worldline method, at ∼0 for Reμhni at β ¼ 0.2,
μ ¼ ffiffiffiffiffiffiffi

0.1
p

and an estimate without regression is obtained by
quoting the value at s ¼ 0.1 directly for an estimate as
regression including this point will likely not predict the

value at s ¼ 0 to be too far off from it. The reason for this
difference might be as follows. We note that there is a trade-
off between errors arising from regression and errors
arising from having s0 that is not sufficiently large enough
to guarantee possible correct convergence. In this case here,
s0 ¼ 3.2 is too far off from our point of interest at s ¼ 0,
and thus may result in a large error resulting from
regression. This error might be larger than the error arising
from inaccurate simulations with s0 ¼ 0.6 and thus
accounts for such a phenomenon. Nonetheless, the values
obtained for both choices of s0 fail to surpass that obtained
from the 2R method with even the worst value at M ¼ 7 at
0.002793.
On top of that, we note that the benefits of regression

might be limited for the 3D XY model. As seen from the p
values on the right diagrams in Fig. 7, the phenomenon of
infinite variance appears relatively quick for both cases,
with p value dropping to a value close to 0 as soon as s hits
0.5 for s0 ¼ 0.6 and a similar phenomenon at s ¼ 2.9 for
s0 ¼ 3.2. Thus, restricting our regression points for which
the p value is at least 0.05 would heavily restrict the
number of points that can be used, and therefore reduces the
prediction ability of the model at s ¼ 0. This is also why we
did not perform regression for this model, as the number of
points might not be sufficient to determine the regression
coefficients.
In both the 2R and the 3R method, a key ingredient

would be the regression method in the final step. Thus, in
view of improving results obtained from regression, we list
down a few plausible explorations. One includes improving
the regression method itself as it was done using ordinary
regression techniques on highly nonlinear models as such
that in (104), where the dependent variable only appears
after a ratio of sums of the exponential of the inverse of its
independent variable. Another possible exploration would
be to reduce the distance of s0 from 0 by evaluating the
expectation of a modified observable. Yet another possible
exploration would be to combine the use of the corrected
complex Langevin method with our 2R or 3R method. The

TABLE II. Estimates for Re μhni and RehSi using various methods from the current literature and from our 2R method as in Fig. 6.

β ¼ 0.2, μ ¼ ffiffiffiffiffiffi
0.1

p
β ¼ 0.7, μ ¼ ffiffiffiffiffiffi

0.1
p

Reμhni RehSi Re μhni RehSi
Original complex Langevin method from [26] 0.001840 −0.07929 0.04926 −1.5268
Corrected complex Langevin method from [26] 0.0003858 −0.06716 0.04905 −1.5240
Worldline method from [26] 1.5495 × 10−7 −0.06230 0.04898 −1.5240
Best for 2R method 0.001641 −0.08791 0.05234 −1.6052

2R method with different values of M
M ¼ 3 0.001641 −0.10397 0.05307 −1.6170
M ¼ 4 0.001797 −0.1046 0.05303 −1.6191
M ¼ 5 0.001849 −0.1069 0.05277 −1.6052
M ¼ 6 0.002455 −0.1097 0.05315 −1.6151
M ¼ 7 0.002793 −0.08791 0.05234 −1.6126
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interested reader is invited to try out some of these
explorations in view of improving the accuracy of the
proposed method.

B. Polyakov chain model

In this subsection, we discuss the results for the one-
dimensional Polyakov chain model [47], whose action is
given by

SðfUgÞ¼−trðβ1U1 � � �UN þβ2U−1
N � � �U−1

1 Þ; β1;β2 ∈R:

ð105Þ

The observable of interest is OlðfUgÞ ¼ trð½U1 � � �UN �lÞ
for l ∈ Zþ. Due to the gauge invariance, this model can
actually be reduced to the one-link model (N ¼ 1) by gauge
fixing [20]. Thus, to test the performance of the 2Rmethod,
we choose to simulate the original problem without fixing
the gauge.
Note that this model works for both Uð1Þ and SUðnÞ

theories. For the Uð1Þ theory, the trace operator reduces to
the identity operator. Let Uk ¼ expðiθkÞ, k ¼ 1;…; N.
Then, the expectation of the regularized observable can
be represented by

hOlis ¼
1

Zs

Z
RN

eilðθ1þ���þθNÞ exp
�
β1eiðθ1þ���þθNÞ þ β2e−iðθ1þ���þθNÞ −

s
2
ðθ21 þ � � � þ θ2NÞ

�
dθ1 � � � dθN; ð106Þ

where

Zs ¼
Z
RN

exp

�
β1eiðθ1þ���þθNÞ þ β2e−iðθ1þ���þθNÞ −

s
2
ðθ21 þ � � � þ θ2NÞ

�
dθ1 � � � dθN:

By the series expansion of the exponential function, we get that

Zs ¼
Z
RN

Xþ∞

j¼−∞
αjeijðθ1þ���þθNÞ exp

�
−
s
2
ðθ21 þ � � � þ θ2NÞ

�
dθ1 � � � dθN ¼

�
2π

s

�
N=2 Xþ∞

j¼−∞
αj exp

�
−
j2N
2s

�
;

FIG. 7. Reweighted results for β ¼ 0.2 with parameter s0 ¼ 0.6 (top) and 3.2 (bottom).
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where

αj ¼
Xþ∞

k¼maxð0;jÞ

βk1β
k−j
2

k!ðk − jÞ! ; j ∈ Z:

Similarly, the regularized observable hOlis given in (106)
can be expanded as

hOlis ¼
1

Zs

�
2π

s

�
N=2 Xþ∞

j¼−∞
αj exp

�
−
ðjþ lÞ2N

2s

�
: ð107Þ

Inspired by the analysis above, one can choose the
expression

hOlis ¼
P

M
k¼0 ake

−Nk2
2sP

M
k¼0 bke

−Nk2
2s

ð108Þ

in the regression. For SUðnÞ theories, a similar expression
will be used, while s will be replaced with 2s due to the
reason stated in Sec. V C.
For the general SUðnÞ theory, the Lie derivative of (105)

can be derived as

Da;kSðfUgÞ ¼ −iβ1trðU1 � � �Uk−1λaUk � � �UNÞ
þ iβ2trðU−1

N � � �U−1
k λaU−1

k−1 � � �U−1
1 Þ:

In our simulation, we would like to focus on the SUð3Þ
model, which has also been studied in [20,47]. Following
[20], we choose β1 and β2 to be 2.27 and 2.04, respectively.
In this case, the exact values of hOli for l ¼ 1, 2, 3 obtained
were

hO1i ¼ 2.0957; hO2i ¼ 0.3761; hO3i ¼ −0.5269;

which have been calculated in [47]. For all the numerical
tests, we chose the fixed time step Δt ¼ 5 × 10−4 and
simulate the complex Langevin dynamics up to T ¼ 2.
Then, we drew one sample for every 10 time steps until
20 million samples were collected. These samples were
used to estimate the expectations of the observables.

Following [48], we use the quantity

ΔF ¼ 1

N

XN
i¼1

trðUiU
†
i − IÞ ð109Þ

to measure the extent of excursion away from ½SUð3Þ�N .
Here I stands for the 3 × 3 identity matrix. Results for some
values of s and N are given in Fig. 8. For instance, when
N ¼ 16, the complex Langevin dynamics quickly diverges
if no regularization is applied. Even when s ¼ 4, we can
still observe a few spikes of the curve at the magnitude of
10−4, which may indicate convergent but biased results. For
s ¼ 8 and 16, the deviation from SUð3Þ is well suppressed,
so that the regularized observables computed from the
samples are likely to be reliable. However, as N increases,
the regularization for s ¼ 8 may no longer be sufficient.
The middle diagram of Fig. 8 shows that for s ¼ 8, the
complex Langevin dynamics fails to converge when
N ¼ 64 and 128. Even with N ¼ 32, the few spikes on
the curve of ΔF may imply possibly biased results. A
reasonable modification appears to be setting s to be
proportional to N, as displayed in the right diagram of
Fig. 8. This agrees with the analysis for (108), in which s
also scales with N.
We now focus on the case N ¼ 16. For the 2R method,

we display the results for s ranging from 4 to 34 in Fig. 9.
The dashed horizontal line denotes the reference solution.
As previously observed, smaller values of s will lead to
unstable complex Langevin dynamics. In these examples,
the estimated values of hOlis for s ¼ 4 and l ¼ 1, 2, 3 are
very close to the exact solution. These indicate the
existence of an example where the regularization can work
well without further corrections. However, the reliability of
this method is hard to judge if the exact solution is
unknown.
We then consider the 3R method and display the results

in Fig. 10. Here we select s0 ¼ 8 and s0 ¼ 16 for which the
results are likely to be accurate according to the evolution
of ΔF. In all the cases, we observe that when s decreases
from s0 to 0, the numerical results first move toward and
then deviate from the exact solutions, which behave
similarly to the Uð1Þ one-link model shown in Fig. 2.

FIG. 8. Restriction of regularization method ΔF. Left: different s for N ¼ 16. Middle: fixed s ¼ 8 for N ¼ 16, 32, 64, 128. Right:
s ¼ N=2.
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This again confirms that, for the high-dimensional inte-
grals, reweighting might fail to provide desired solutions.
In light of the observations above, we thus consider the

use of the 2R method to extrapolate the observables. As
discussed previously, the proposed regression model is
given by

hOlis ¼
P

M
k¼0 ake

−Nk2
4s

1þPM
k¼1 bke

−Nk2
4s

: ð110Þ

We will use data points with s ∈ ½10; 34� in the extrapo-
lation. Note that some of the points closer to s ¼ 0 in
Fig. 10 were discarded to avoid including points with
significant biases. The extrapolations obtained using
M ¼ 3, 4, 5, 6, 7 were plotted in Fig. 11. For all three

observables, the results obtained were generally acceptable,
though the values at s ¼ 0 were slightly underestimated.

C. Heavy dense QCD

In this section, we consider a more realistic numerical
example originating from the heavy dense QCD model at
finite potential, studied in several works [6,48,49]. The
field is discretized on a four-dimensional lattice indexed by
x ≔ ðx0;xÞ ∈ X, where x ¼ ðx1; x2; x3Þ [see also (87)]. We
consider a vector field fUg defined on the lattice, and each
Ux;μ is a member of the SUð3Þ group. The action of the
heavy dense QCD model is given by

SðfUgÞ ¼ − ln detMμðfUgÞ þ SBðfUgÞ;

where SBðfUgÞ is defined by

FIG. 9. Regularized results for the problem (105).

FIG. 10. Reweighted regularization of Polyakov model. s0 ¼ 16 (top) and s0 ¼ 8 (bottom).
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SBðfUgÞ ¼ −β
X
x∈X

X
ν1<ν2

�
1

6
½trðUx;ν1Uxþν̂1;ν2U

−1
xþν̂2;ν1

U−1
x;ν2Þ þ trðUx;ν2Uxþν̂2;ν1U

−1
xþν̂1;ν2

U−1
x;ν1Þ� − 1

�
;

and detMμ is the fermionic determinant with μ being the
chemical potential, whose definition is

detMμðfUgÞ ¼
Y
x

detðI þ CPxðfUgÞÞ2

× detðI þ C0½PxðfUgÞ�−1Þ2;

where C ¼ ½2κ expðμÞ�l0 , C0 ¼ ½2κ expð−μÞ�l0 with κ being
the hopping parameter, and

PxðfUgÞ ¼
Yl0
t¼1

Uðt;xÞ;0:

FIG. 13. Numerical results for the heavy dense QCD model. Left: β ¼ 5.0, μ ¼ 2.0; right: β ¼ 5.9, μ ¼ 1.4.

FIG. 12. The evolution of ΔF. Left: β ¼ 5.0, μ ¼ 2.0; right: β ¼ 5.9, μ ¼ 1.4.

FIG. 11. Results of Polyakov model using the 2R method.
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We refer the readers to [6] for the Lie derivatives of this
action.
In our simulation, we worked with two sets of param-

eters, namely μ ¼ 2.0, β ¼ 5.0 and μ ¼ 1.4, β ¼ 5.9. The
value of κ was set to be 0.12. The observable of interest is
given by

PðfUgÞ ¼ 1

3l1l2l3

X
x

trPx:

The parameters of the lattice used in our numerical tests is
given by l0 ¼ 6, l1 ¼ l2 ¼ l3 ¼ 8, and the time step is fixed
to be Δt ¼ 2 × 10−5.
For the heavy dense QCDmodel, we only considered the

2R method. To determine the range of s to be adopted in
the regression model, we again study the evolution of the
deviation from SUðnÞ. This is defined in a similar way as
(109), given by

ΔF ¼ 1

4l0l1l2l3

X3
μ¼0

X
x∈X

trðUx;μU
†
x;μ − IÞ:

Once again, we observe from Fig. 12 that larger values of s
result in smaller deviations. In both cases, using s ¼ 1

reduces the deviation to the magnitude of 10−5, for which
we expect that the results may contain sufficiently small
biases and can be used in the regression model.
To estimate the expectation, we used 6.4 million samples

in our tests. By computing the regularized observable hPis
for s ranging from 1 to 3.5, we perform extrapolation based
on the expression (86) with b0 ¼ 1. The results are
provided in Fig. 13. In both cases, the regression results
using M ¼ 6 and M ¼ 7 give similar estimates, whose
values at s ¼ 0 can be considered as approximations of hPi.
Note that for β ¼ 5.0, the complex Langevin method is
generally considered to be not applicable in the standard

literature. Thus, the result of our approximation obtained by
the 2R method remains to be validated. For the case with
β ¼ 5.9, our estimate agrees with that in [20], in which
gauge cooling is applied to stabilize the dynamics.

VII. CONCLUSION

We have performed an in-depth study of the regulari-
zation of the complex Langevin method. It is demonstrated
that the regularization can produce significant bias in some
cases, and we have proposed a few extensions to the
regularized complex Langevin method:
(1) The 3R method, which performs regression based on

the results of the reweightingmethodproposed in [32].
(2) The 2Rmethod, which performs regression based on

the regularized results with a number of different
parameters.

The computational cost of the 2Rmethod is higher than the
other two approaches, since multiple complex Langevin
dynamics have to be simulated for different regularization
constants. The reweighting method and its 3R extension
works well in the one-link toy model. However, it is
observed that in the high-dimensional case, the results of
the reweighting were reliable only for a very small range of
parameters. The best results are obtained from the 2R
method, which has successfully simulated one example in
lattice QCD for which the original complex Langevin
method was known to be inapplicable. We expect that this
approach can also be applied to the actions with poles,
which will be studied in our future works.
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