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ON THE VALIDITY OF COMPLEX LANGEVIN METHOD FOR
PATH INTEGRAL COMPUTATIONS\ast 

ZHENNING CAI\dagger , XIAOYU DONG\ddagger , AND YANG KUANG\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The complex Langevin (CL) method is a classical numerical strategy to alleviate the
numerical sign problem in the computation of lattice field theories. Mathematically, it is a simple
numerical tool to compute a wide class of high-dimensional and oscillatory integrals. However, it
is often observed that the CL method converges but the limiting result is incorrect. The literature
has several unclear or even conflicting statements, making the method look mysterious. By an in-
depth analysis of a model problem, we reveal the mechanism of how the CL result turns biased as
the parameter changes, and it is demonstrated that such a transition is difficult to capture. Our
analysis also shows that the method works for any observables only if the probability density function
generated by the CL process is localized. To generalize such observations to lattice field theories, we
formulate the CL method on general groups using rigorous mathematical languages for the first time,
and we demonstrate that such localized probability density function does not exist in the simulation
of lattice field theories for general compact groups, which explains the unstable behavior of the CL
method. Fortunately, we also find that the gauge cooling technique creates additional velocity that
helps confine the samples, so that we can still see localized probability density functions in certain
cases. Thereby, the gauge cooling method significantly broadens the application of the CL method.
The limitations of gauge cooling are also discussed. In particular, we prove that gauge cooling has
no effect for Abelian groups, and we provide an example showing that biased results still exist when
gauge cooling is insufficient to confine the probability density function.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . complex Langevin method, gauge cooling, lattice field theory
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1. Introduction. Quantum field theory (QFT) is a fundamental theoretical
framework in particle physics and condensed matter physics, which has achieved great
success in explaining and discovering elementary particles in history. Although QFT
still lacks a rigorous mathematical foundation, there have already been numerous
approaches to carrying out computations in QFT, based on either perturbative or
nonperturbative approaches. Perturbative approaches can be applied when the cou-
pling constant, which appears in the coupling term in the Lagrangian describing the
interaction between particles, is relatively small, so that the asymptotic expansions
with respect to the coupling constant, often denoted by Feynman diagrams, can be
adopted as approximations. In quantum chromodynamics (QCD), which studies the
interaction between quarks and gluons, the perturbative approaches work in the case
of large momentum transfers. However, when studying QCD at small momenta or
energies (less than 1GeV), due to renormalization, the coupling constant is compara-
ble to 1 and the perturbative theory is no longer accurate [22]. Therefore, one has to
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A686 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

resort to nonperturbative approaches, typically lattice QCD calculations, to obtain
reliable approximations of the observables.

Lattice QCD is formulated based on the path integral quantization of the classical
gauge field theory. In general, the expectation of any observable O can be computed
by evaluating the discrete path integral

\langle O\rangle = 1

Z

\int 
\Omega 

O(x)e - S(x) dx, Z =

\int 
\Omega 

e - S(x) dx,

where \Omega is a space whose number of dimensions is often larger than 104, and S(x) is
the action. This problem is of broad interest in statistical mechanics [21], quantum
mechanics [15], and string theories [9]. Due to the high dimensionality, one has to
apply Monte Carlo methods to compute this integral. However, when the chemical
potential is nonzero, the action is no longer real-valued, so that e - S(x) is no longer
positive, which then causes a severe numerical sign problem in the computation [19].
Here numerical sign problem refers to the phenomenon that the variance of a sto-
chastic quantity is way larger than its expectation, resulting in significant difficulty in
reducing the relative error in Monte Carlo simulations. The large variance is usually
due to strong oscillation of the stochastic quantity, causing significant cancellation
of its positive and negative contributions. Such a problem typically occurs in quan-
tum Monte Carlo simulations, including both lattice field theory [27] and real-time
dynamics [38]. In lattice QCD, the imaginary part of S(x) contributes to the high
oscillation, so that the ``partition function"" Z itself already has a small value and is
difficult to compute accurately.

In general, there is no universal approach to solving the numerical sign problem.
For example, the inchworm Monte Carlo method [15, 14], which takes the idea of
partial resummation, has been proposed to mitigate the numerical sign problem for
real-time dynamics of the impurity model or open quantum systems; the Lefschetz
thimble method [17, 16], which uses Morse theory to change the integral path, has
been applied in lattice QCD computations. In this work, we are interested in another
approach to taming the numerical sign problem, known as the complex Langevin (CL)
method, whose basic idea is to search for a positive probability function in a higher-
dimensional space that is equivalent to the ``complex probability density function""
Z - 1e - S(x), so that we can apply the Monte Carlo method in this higher-dimensional
space, which is free of numerical sign problems [42]. In the CL method, such a space
is established by complexifying all the variables, meaning to replace all real variables
by complex variables, and extending all functions defined on \BbbR to functions on \BbbC by
analytic continuation. Thus the number of dimensions is doubled. The equivalent
probability density function in this complexified space is sampled by complexifying
the Langevin method. Such a method is also known as stochastic quantization [31].
We refer the readers to [39] for a recent review of this method.

Since the CL method was proposed in [24, 33], it has never been fully understood
theoretically. In numerical experiments, it is frequently seen that this method gen-
erates biased results, and its validity has therefore been questioned by a number of
researchers [20, 7, 34]. Its application had been rarely seen until one breakthrough of
the CL method, called the gauge cooling technique, was introduced in [41]. Such a
strategy utilizes the redundant degrees of freedom in the gauge field theory to stabilize
the method. With this improvement, the CL method has been successfully applied
to finite density QCD [5, 43, 25] and the computations in the superstring theory
[8, 32]. Recently, it has also been used in the computation of spin-orbit coupling [10].
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ON THE VALIDITY OF CL METHOD A687

Despite the success, failure of the CL method still occurs, and researchers are still
working hard on understanding the algorithm by formal analysis and some particular
examples [3, 29, 34], hoping to make further improvements. For instance, the recent
work [36] analyzes a specific one-dimensional case, where the authors quantified the
bias by relating it to the boundary terms when performing integration by parts. The
results therein have been further applied in [37] to correct the CL results. In [6],
the authors analyze the role of poles in the Langevin drift and find that although the
converged CL results satisfy the Schwinger--Dyson equation, the integrals may still be
incorrectly predicted. This phenomenon is further studied in [35] in a rigorous way
for the one-dimensional case. The issue revealed in [36] shows that the correctness of
the CL method depends highly on the decay rate of the probability density function
and the growth rate of the observable at infinity, which is difficult to predict before
the computation, especially in the high-dimensional case. The only case in which
the convergence can be guaranteed for any observable is when the probability den-
sity function is localized, which has been studied in [3] for a one-dimensional model
problem.

In this paper, we will carry out a deeper study of this specific case and clarify
some unclear statements and some misunderstanding in previous studies. Later, we
will show that in lattice QCD simulations, the localized probability density function
can occur only after gauge cooling is introduced, although it is not always effective.
This reveals why this technique is essential to the CL method.

To begin with, we will provide a brief review of the CL method and introduce the
model problem studied in [3].

1.1. Review of the complex Langevin method. To sketch the basic idea of
the CL method in the lattice field theory, we can simply consider the one-dimensional
integration problem which aims to find

(1.1) \langle O\rangle = 1

Z

\int 
\BbbR 
O(x)e - S(x) dx, Z =

\int 
\BbbR 
e - S(x) dx.

When S(x) is real, we can regard Z as the partition function, so that the integral can
be evaluated by the Langevin method. Specifically, we can approximate (1.1) by

\langle O\rangle \approx 1

N

N\sum 
k=1

O(Xk),

where Xk are samples generated by simulating the Langevin equation

(1.2) dx = K(x) dt+ dw, K(x) =  - S\prime (x),

and we choose Xk = x(T + k\Delta T ) for a sufficiently large T and sufficiently long time
difference \Delta T . In (1.2), w(t) is the standard Brownian motion satisfying dw2 = 2dt.
The method converges when the stochastic process is ergodic. We refer the readers
to [28] for more details about the theory of ergodicity.

When S(x) is complex, the theory of the above method breaks down, since Z is
no longer a partition function. Interestingly, the above algorithm can still be carried
out, at least formally, if the functions O(x) and S(x) can be extended to the complex
plane. Now we assume that both O(x) and S(x) are analytic and can be extended to
\BbbC holomorphically. By naming the new functions as O(z) and S(z), we can still carry
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A688 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

out the above process by the replacement x \rightarrow z and Xk \rightarrow Zk. More specifically, if
we denote z by x+ iy, x, y \in \BbbR , then the integral (1.1) is approximated by

(1.3) \langle O\rangle \approx 1

N

N\sum 
k=1

O(Xk + iYk),

where the samples Xk and Yk are generated by simulating the following CL equation

(1.4)

\Biggl\{ 
dx = K(x, y) dt+ dw, K(x, y) = Re( - S\prime (x+ iy)),

dy = J(x, y) dt, J(x, y) = Im( - S\prime (x+ iy)),

and choosing Xk = x(T + k\Delta T ) and Yk = y(T + k\Delta T ). For the initial condition,
we require that y(0) = 0 and x(0) can be an arbitrary real number. This is the CL
method.

The validity of the CL method is usually studied using the dual Fokker--Planck
(FP) equation, which describes the evolution of the probability density function of
x(t) and y(t) for the SDE (1.4). Using P (x, y; t) to denote the joint probability of
x(t) and y(t), we can derive from (1.4) that

(1.5) \partial tP = LTP, P (x, y; 0) = p(x)\delta (y),

where p(x) is a probability density function on the real axis, and LT represents the
FP operator:

(1.6) LTP = \partial xxP  - \partial x(KP ) - \partial y(JP ).

Thus the right-hand side of (1.3) converges to the quantity

(1.7) lim
t\rightarrow +\infty 

\int 
\BbbR 

\int 
\BbbR 
O(x+ iy)P (x, y; t) dx dy.

The justification of the CL method requires us to check whether the above quantity
equals \langle O\rangle .

Such equivalence has been shown in [7, 36] under certain conditions. Here we
would like to restate the result as a rigorous theorem, which requires the following
assumptions on the observable function O(x) and the ``complex probability function"":
(H1) Let \scrO (x, y; t) be the solution of the backward Kolmogorov equation

\partial t\scrO = L\scrO , \scrO (x, y; 0) = O(x+ iy),

where L = \partial xx +K\partial x + J\partial y. It holds that

(1.8)

\int 
\BbbR 

\int 
\BbbR 
\scrO (x, y; \tau )P (x, y; t - \tau ) dx dy =

\int 
\BbbR 

\int 
\BbbR 
O(x+ iy)P (x, y; t) dx dy

for any 0 \leq \tau \leq t.
(H2) The ``forward Kolmogorov equation"" for the complex-valued function \rho (x; t)

(1.9) \partial t\rho = \partial x(S
\prime (x)\rho ) + \partial xx\rho , \rho (x; 0) = p(x)

has the unique steady-state solution

lim
t\rightarrow +\infty 

\rho (x; t) = \rho \infty (x) =
1

Z
e - S(x).
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ON THE VALIDITY OF CL METHOD A689

(H3) For any 0 \leq \tau \leq t, it holds that

lim
X\rightarrow \infty 

[\scrO (X, 0; \tau )\partial x\rho (X; t - \tau ) - \rho (X; t - \tau )\partial x\scrO (X, 0; \tau )]

= lim
X\rightarrow \infty 

S\prime (X)\scrO (X, 0; \tau )\rho (X; t - \tau ) = 0.

Based on the above assumptions, the following theorem implies the validity of the CL
method.

Theorem 1.1. Assume that the conditions (H1) and (H3) hold. Then for any
t > 0,

(1.10)

\int 
\BbbR 
\rho (x, t)O(x) dx =

\int 
\BbbR 

\int 
\BbbR 
P (x, y; t)O(x+ iy) dx dy.

In the above theorem, we can take the limit t \rightarrow +\infty on both sides of (1.10). By
the assumption (H2), one sees that (1.7) equals \langle O\rangle , which justifies the CL method.
For comprehensiveness, we provide the proof of the theorem in Appendix A. The CL
method computes the right-hand side of (1.10), which no longer includes rapidly sign-
changing functions as long as the observable O(x+ iy) is not oscillatory. Thereby the
numerical sign problem is mitigated.

Unfortunately, this theorem is far from satisfactory since the hypotheses are dif-
ficult to justify. In fact, these hypotheses are often too ideal such that they are often
violated, resulting in some mysterious behaviors of the CL method. In applications,
we often find the CL method fails to work due to divergence. Even worse, sometimes
the algorithm appears to be convergent, but as the number of samples N increases,
the right-hand side of (1.3) does not converge to its left-hand side, leading to a bi-
ased numerical result. This means that the conditions of Theorem 1.1, which look
reasonable for the Langevin method, are often too strong in the application of the CL
method. An example will be given in the next subsection.

Remark 1. In applications of the CL method in field theories, the function
exp( - S) is usually provided by the product of a real part exp( - S0) and the fermionic
determinant. However, the fermionic determinant may contain zeros, and as a result,
the ``complex drift velocity""

K(x, y) + iJ(x, y) =
1

exp( - S(x+ iy))

d

dx
exp( - S(x+ iy))

includes poles. In this case, Theorem 1.1 still holds if the poles do not appear on
\BbbR . In this paper, we temporarily restrict ourselves to the simpler holomorphic case,
and the difference will be revealed in Remark 2 at the end of section 2.3. Note that
Theorem 1.1 can be generalized to the multidimensional case without difficulty.

1.2. Failure of the CL method. The failure of the CL method has been
demonstrated in a number of previous works [34, 29, 36]. Here we adopt the example
used in [3, 29] to demonstrate such a phenomenon. We choose the observable as
O(x) = x2 and the complex action as

(1.11) S(x) =
1

2
(1 + iB)x2 +

1

4
x4, B \in \BbbR .

It has been found in [29] that the CL method converges to the correct expectation
values when B is small, while for large B, the CL method may still converge, but the
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(a) Results from solving the CL equation (b) Results from solving the FP equation

Fig. 1. The imaginary part of the expectation value O(z) = z2.

limiting value differs from the integral (1.1). We have redone the numerical experiment
by simulating the stochastic equation (1.4) for B = 1 to 5, and the results are given
in Figure 1(a), showing the same behavior as in [29]. Furthermore, we find that for
B > 4, the simulation becomes unstable in the sense that arithmetic overflow often
appears, and for stable simulations, the CL result deviates from the exact integral
significantly. To better confirm the phenomenon, we solve the FP equation (1.5)
numerically using the method to be introduced in subsection 2.1 (see Figure 1(b)).
The disagreement between the two figures for large B also implies the lack of reliability
for the CL simulation.

For this specific example, it is known by the analysis in [3] that for B \leq 
\surd 
3, there

exists y - > 0 such that P (x, y; t) = 0 for any x and t if | y| > y - . Furthermore, the
authors of [3] proposed the decay rate exp( - ax4) for the marginal probability density
function of x. The fast decay of the probability density function on the complex plane
implies that the conditions (H1)--(H3) hold true, so that Theorem 1.1 guarantees the
validity of the CL method. In this situation, following [3], we consider the probability
density function as ``localized."" In the literature, the localization of the probability
may refer to a sufficient decay of the probability density function such that the samples
that drift far away from the real axis can be ignored. In this sense, as will be discussed
in the next section, the admissible decay rate depends on the increasing rate of the
observable, which will introduce significant difficulty to our analysis. Therefore in this
paper, we only consider the localization of the probability in a strong sense, i.e., the
probability density function is said to be localized if and only if there exists Y \in \BbbR +

such that P (x, y) = 0 for any x \in \BbbR and | y| > Y . Here we focus mainly on the
localization in the y-direction since in the applications of the CL method (mainly
QCD), the x-direction is usually a compact group, as will be detailed in section 3.

However, the behavior of the solution for B >
\surd 
3 remains unclear. In [3], the

authors predicted a power decay of the probability function when B >
\surd 
3, but

they left only a vague comment saying that this is ``an important signal of failure.""
However, in [29], the authors argued by numerical experiment that the probability
density function falls off exponentially for B \leq 2.6, implying again that Theorem 1.1
holds and the CL method is unbiased, and when B > 2.8, power decay is observed,
indicating the failure of the CL method.

These conflicting results for this model problem also imply the lack of under-
standing of the CL method. In this work, we will begin our discussion from this toy
example and try to answer the following questions:
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\bullet How does the power decay of the probability affect the numerical value of the
expectation? How is it related to the conditions of Theorem 1.1?

\bullet What is the critical value of B from which the CL result deviates from the
exact integral?

\bullet What occurs to the distribution function when B passes this critical value?
Is it a smooth transition?

After getting more mathematical insights into this model problem, we will further
study the phenomenon of localized probability density functions in the lattice field
theory. The rest of the paper is organized as follows. Section 2 is devoted to a
comprehensive study of the model problem (1.11). The formulation of the CL method
in lattice field theories will be provided in section 3, where we will also demonstrate
the non-existence of localized probability density functions. In section 4, we study the
effect of the gauge cooling technique in localizing the probability density functions.
Finally, some concluding remarks are given in section 5.

2. A study of the model problem. This section is devoted to a closer look
at the integration problem with action (1.11), for which the drift velocities are

(2.1) K(x, y) =  - 
\bigl( 
x - By + x3  - 3xy2

\bigr) 
, J(x, y) =  - 

\bigl( 
y +Bx+ 3x2y  - y3

\bigr) 
.

Following [29], we study the complexified observable O(z) = z2 = x2  - y2 + i2xy. To
understand the phenomenon shown in Figure 1, we will first resolve the ambiguity in
the literature about the decay rate of the probability density function; this will be
done by solving the FP equation (1.5) numerically.

2.1. Numerical method for the Fokker--Planck equation. The FP equa-
tion for the CL equation has been numerically solved in [3, 36]. It is found in [36] that
according to the CFL condition, very small time steps need to be adopted by explicit
schemes due to the large values of velocities when | x| and | y| are large. Therefore in
our study, we take the numerical method of characteristics to achieve higher efficiency.

For any given x(0) and y(0), the characteristic curve for (1.5) starting from this
point is given by the following equations:

(2.2) x\prime (t) = K(x, y), y\prime (t) = J(x, y).

It can be derived from (1.5) and (2.2) that on these characteristic curves, the proba-
bility density function P satisfies the following differential equation:

(2.3)
d

dt

\Bigl( 
e
\int t
0
f(x(s),y(s))dsP (x(t), y(t); t)

\Bigr) 
= e

\int t
0
f(x(s),y(s))ds\partial xxP (x(t), y(t); t),

where f(x, y) = \partial xK(x, y)+\partial yJ(x, y). Based on such a form, we apply the backward
Euler method to obtain the following semidiscretization of (2.3):

P (x(tk+1), y(tk+1); tk+1) - \Delta t \partial xxP (x(tk+1), y(tk+1); tk+1)

= e - 
\int tk+1
tk

f(x(s),y(s))dsP (x(tk), y(tk); tk),(2.4)

where \Delta t = tk+1  - tk denotes the time step, and (x(\cdot ), y(\cdot )) denotes a single charac-
teristic curve. Therefore if we want to obtain P (xl, xj ; tk+1) for some specific point
(xl, xj), we need to solve the characteristic curve between tk and tk+1 by finding the
solution of the backward system of ordinary differential equations

(2.5)

\Biggl\{ 
x\prime (t) = K(x, y), x(tk+1) = xl,

y\prime (t) = J(x, y), y(tk+1) = yj ,
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so that in the last term of (2.4), the values of x(tk) and y(tk) can be determined,
and the integral of f can be computed. In our scheme, we solve the backward ODE
system (2.5) by the classic Runge--Kutta scheme and integrate f using Simpson's
rule. In fact, since K and J are independent of t, for any given (xl, xj), the point
(x(tk), y(tk)) and the integral of f do not change if \Delta t does not change. Therefore, in
our implementation, we just choose a fixed time step so that these quantities need to
be computed only once for each spatial grid point (xl, xj). Numerically, the integral
of P (x, y; t) may deviate from one, and we scale the whole function after each time
step by multiplying a constant to restore this property.

For the spatial discretization in our simulations, we adopt the finite difference
method and the Fourier spectral method in different cases. The Fourier spectral
method provides good accuracy for the derivatives, which are needed in the asymptotic
expansions to be studied in subsection 2.4, while in the study of the decay of the
probability, we adopt the finite difference method to avoid aliasing error appearing
when periodizing the domain in the Fourier spectral method, which may ruin the tail
of the probability density function. In what follows, we provide some details of these
two methods.

2.1.1. Finite difference scheme. We adopt the uniform grid with N \times M
cells, each of which has the size of \Delta x and \Delta y in the x- and y-directions, respectively.
Suppose that at time tk the probability is P (x, y; tk), and we want to determine P
at time tk+1 with a central difference scheme to approximate \partial xx. Then the full
discretization of (2.3) at point (xl, yj) is given as

(2.6)

P (xl, yj ; tk+1) - 
\Delta t

(\Delta x)2
[P (xl+1, yj ; tk+1) - 2P (xl, yj ; tk+1) + P (xl - 1, yj ; tk+1)]

= \lambda l,j(\Delta t)P (\~xl, \~yj ; tk),

where (\~xl, \~yj) = (x(tk), y(tk)) is obtained by solving (2.5), and \lambda l,j(\Delta t) is the expo-
nential of the integral of f in (2.4). For any points located outside the computational
domain, we set the value of P to be zero. In general, the point (\~xl, \~yj) is not on the
grid point, and the value of P (\~xl, \~yj ; tk) is obtained from the bilinear interpolation of
P (x, y; tk). Defining

P
(k+1)
j = [P (x1, yj ; tk+1), P (x2, yj ; tk+1), . . . , P (xN , yj ; tk+1)]

\top 
, j = 1, . . . ,M,

by (2.6), we are required to solve the linear systems SP
(k+1)
j = b

(k+1)
j , j = 1, . . . ,M ,

with S \in \BbbR N\times N being a tridiagonal matrix and b
(k+1)
j corresponding to the right-

hand side of (2.6). These tridiagonal linear systems can be efficiently solved by the
Thomas algorithm.

2.1.2. Fourier spectral method. To employ the Fourier spectral method, the
probability is assumed to be periodic in both real and imaginary directions. This is
reasonable if we choose a sufficiently large computational domain such that the prob-
ability is sufficiently small on the boundary. Suppose the domain is [ - Lx/2, Lx/2]\times 
[ - Ly/2, Ly/2] and the number of Fourier coefficients is N,M in the x-, y-directions,
respectively. The probability density function is approximated by

(2.7) P (x, y; t) =
1

NM

N/2 - 1\sum 
n= - N/2

M/2\sum 
m= - M/2

\^Pn,m(t)e
2\pi i
Lx

nxe
2\pi i
Ly

my
.
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ON THE VALIDITY OF CL METHOD A693

Thus we can write (2.4) for x(tk+1) = xl and y(tk+1) = yj as

1

NM

N/2 - 1\sum 
n= - N/2

M/2\sum 
m= - M/2

\biggl( 
1 +

4\pi 2n2

L2
x

\Delta t

\biggr) 
\^Pn,m(tk+1)e

2\pi i
Lx

nxle
2\pi i
Ly

myj

= \lambda l,j(\Delta t)P (\~xl, \~yj ; tk).

Applying the discrete inverse Fourier transform on both sides, we get the scheme
(2.8)

\^Pn,m(tk+1) =

\biggl( 
1 +

4\pi 2n2

L2
x

\Delta t

\biggr)  - 1 N\sum 
l=1

M\sum 
j=1

\lambda l,j(\Delta t)P (\~xl, \~yj ; tk)e
 - 2\pi i

Lx
nxle

 - 2\pi i
Ly

myj .

Note that the computational cost of the above scheme is O(M2N2) since \~xl and \~yj
are not collocation points.

2.2. Decay of the distribution. To resolve the ambiguity about the decay
rate of steady-state probability density function P (x, y) := P (x, y;\infty ), we solve the
FP equation for a sufficiently long time until the steady state is attained. For the
purpose of visualization, we consider the marginal probability density functions

(2.9) Px(x) =

\int \infty 

 - \infty 
P (x, y) dy, Py(y) =

\int \infty 

 - \infty 
P (x, y) dx,

and we focus mainly on the cases with B close to
\surd 
3 where conflicting results are

observed in the literature as stated in subsection 1.2. The quantities (2.9) are plotted
in Figure 2 for B from 1.5 to 2.3. From the figure, we observe the following phenomena:
(i) Py(y) drops rapidly for B \leq 1.7; (ii) when B surpasses 1.8, the tail of Py(y) starts
to rise up; (iii) for B \geq 2.1, both Py(y) and Px(x) show the power-like decay. These
results contradict the statement in [30] that the power decay shows up only when B
is greater than 2.6. In our results, such decay is obvious as early as B = 2.0. In fact,
we conjecture that such power decay appears immediately when B exceeds

\surd 
3. It is

not obvious in the numerical experiments only because of the small coefficient in front
of the power decay. Such an argument can be supported by some analysis of the FP
equation, which will be clarified in the following two parts.

2.2.1. Possibility of the exponential decay (\bfitB \leq 
\surd 
3). In the steady-

state FP equation \partial x(KP ) + \partial y(JP ) = \partial xxP , both K and J are polynomials, which
inspires us to conjecture that the solution P (x, y) may behave like the exponential of
a polynomial when x or y is large, so that P (x, y) decays exponentially. Specifically,

Fig. 2. Px(x) and Py(y) for different B.
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A694 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

we can write P (x, y) as

P (x, y) \approx exp( - Ar\beta )g(\theta ) for r \gg 1,

where (r, \theta ) is the polar coordinates of (x, y). Straightforward computation yields

LTP \approx 
\biggl( 
g(\theta )

2
[\beta 2Ar\beta  - 2(Ar\beta  - 1) + (\beta 2A2r2\beta  - 2  - 2\beta Ar\beta +2  - (\beta  - 2)\beta Ar\beta  - 2

+ 12r2) cos 2\theta  - 2\beta Ar\beta + 4] + g\prime (\theta )[(\beta Ar\beta  - 2 + r2 + r - 2) +B] sin 2\theta 

+ g\prime \prime (\theta )r - 2 sin2 \theta 

\biggr) 
exp( - Ar\beta ) for r \gg 1.

When r \rightarrow +\infty , the term with slowest decay behaves like

\varphi (r) = rmax(\beta +2,2\beta  - 2) exp( - Ar\beta ).

By focusing on this leading order term, we have

LTP (x, y)

\varphi (r)
\approx 

\left\{     
 - \beta Ag(\theta ) cos 2\theta if \beta < 4,

 - \beta Ag(\theta ) cos 2\theta + \beta 2A2g(\theta ) cos2 \theta if \beta = 4,

\beta 2A2g(\theta ) cos2 \theta if \beta > 4.

Since P (x, y) is the steady-state solution of the FP equation, the above quantity must
equal zero. For any \alpha , this requires that g(\theta ) be zero for almost every \theta .

If \beta < 4, the value of g(\theta ) can be nonzero for \theta = \pm \pi /4 and \theta = \pm 3\pi /4. This
means that P (x, y) can be nonzero in two strips parallel to the lines y = \pm x. However,
such strips cannot be formed due to the diffusion in the x direction. Similarly, if \beta > 4,
P (x, y) can have nonzero values in the strip perpendicular to the x-axis, which is also
not allowed because of the Brownian motion. This excludes the choices \beta < 4 and
\beta > 4.

In fact, such an FP equation only allows the localizing strip to be parallel to the
x-axis, which corresponds to \theta = 0 and \theta = \pi . When \beta = 4, choosing A = 1/4 allows
us to have g(\theta ) \not = 0 when either \theta = 0 or \theta = \pi holds. As a summary, such analysis
shows that if P (x, y) has exponential decay, the only possible choice of \beta is 4, and
in this case, the support of P (x, y) must be confined in a strip-like domain parallel
to the x-axis. This occurs when B \leq 

\surd 
3, as can be demonstrated in the following

proposition.

Proposition 2.1. Suppose 0 \leq B \leq 
\surd 
3. There exists a constant \alpha > 0 such that

J(x, y) defined in (2.1) satisfies the following conditions:
(i) J(x, \alpha ) \leq 0 for all x \in \BbbR .
(ii) J(x, - \alpha ) \geq 0 for all x \in \BbbR .
Proof. Here we only show that J(x, \alpha ) \leq 0 for all x \in \BbbR , and the proof of the

other part is almost identical. For simplicity, we define

Q(x) := J(x, \alpha ) =  - 3\alpha x2  - Bx+ \alpha 3  - \alpha .

The function Q(x) is a quadratic polynomial, whose maximum value can be obtained
as

(2.10) max
x\in \BbbR 

Q(x) =
B2

12\alpha 
+ \alpha 3  - \alpha =

1

\alpha 

\Biggl[ \biggl( 
\alpha 2  - 1

2

\biggr) 2

+
B2

12
 - 1

4

\Biggr] 
.
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When 0 \leq B \leq 
\surd 
3, we can choose

(2.11) \alpha =
1\surd 
2

\sqrt{} 
1 - 

\sqrt{} 
1 - B2

3

so that maxx\in \BbbR Q(x) is exactly zero, meaning that Q(x) is always nonpositive, which
completes the proof of the proposition.

This proposition shows that when 0 \leq B \leq 
\surd 
3, the solution of (1.4) satisfies

y(t) \in [ - \alpha , \alpha ] if the initial condition y(0) \in [ - \alpha , \alpha ]. This can be illustrated by
plotting the velocity field (K(x, y), J(x, y)), which shows that on the lines y = \pm \alpha , all
the velocities point toward the horizontal axis. Thus (x(t), y(t)) can never drift out
of the strip between these two lines, causing zero values of P (x, y) for all | y| > \alpha . In
other words, the distribution P (x, y) has a compact support [ - \alpha , \alpha ] in the imaginary
direction, and our previous analysis shows that the decay rate in the x-direction is
like exp( - x4/4). The right panel of Figure 2 also validates the existence of such a
strip.

2.2.2. Possibility of the power decay (\bfitB >
\surd 
3). For completeness, we

apply a similar analysis to demonstrate the rate of the power decay. Such analysis
has already been done in [3], while the angular function is not included. Here we will
carry out a more rigorous analysis by assuming

P (x, y) \approx r - \beta g(\theta ) for r \gg 1.

Thus

LTP \approx r - \beta  - 2

\biggl( 
g\prime \prime (\theta ) sin2(\theta ) + g\prime (\theta )

\bigl( 
Br2 +

\bigl( 
\beta + r4 + 1

\bigr) 
sin 2\theta 

\bigr) 
+
1

2
g(\theta )

\bigl[ 
\beta 2 +

\bigl( 
\beta (\beta + 2) - 2(\beta  - 6)r4

\bigr) 
cos(2\theta ) - 2(\beta  - 2)r2

\bigr] \biggr) 
\approx [(6 - \beta )g(\theta ) cos 2\theta + g\prime (\theta ) sin 2\theta ]r2 - \beta .

Therefore (6 - \beta )g(\theta ) cos 2\theta +g\prime (\theta ) sin 2\theta = 0, whose solution is g(\theta ) = C(sin 2\theta )\beta /2 - 3

for any C \in \BbbR . Only when \beta = 6, the positivity of P (x, y) can be guaranteed. Thus
we conclude that

P (x, y) \approx C

(x2 + y2)3
for x2 + y2 \gg 1,

which is clearly not a localized probability density function and should correspond
to any B exceeding the critical value

\surd 
3. As a result, the decay of the marginal

probability density functions (2.9) behaves like

Px(x) \propto x - 5 for | x| \gg 1,

Py(y) \propto y - 5 for | y| \gg 1,

which has been numerically verified as shown in Figure 2. The analysis further con-
firms that the absence of power decay in the numerical results of B = 1.8 and 1.9
is due to the smallness of C. As we will see later in section 2.4.2, the values of the
probability density function may have dropped below the machine epsilon when the
power decay shows up, so that the numerical method is not able to capture such a
decay rate.
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A696 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

2.3. Effect of the fat-tailed distribution. Knowing that B =
\surd 
3 separates

the two types of decay rates, we would like to study how this affects the observables.
When B is large, since the CL method no longer converges to the exact integral, we
conclude that at least one of the assumptions (H1)--(H3) is violated. Among the three
conditions, the only one that may be related to the tail of P (x, y) is (H1). In fact, in
[7], instead of given as a condition, the assumption (H1) is derived as follows:

\partial 

\partial \tau 

\int 
\BbbR 

\int 
\BbbR 
\scrO (x, y; \tau )P (x, y; t - \tau ) dx dy

=

\int 
\BbbR 

\int 
\BbbR 

\biggl[ 
\partial \scrO (x, y; \tau )

\partial \tau 
P (x, y; t - \tau ) +\scrO (x, y; \tau )

\partial P (x, y; t - \tau )

\partial \tau 

\biggr] 
dx dy

=

\int 
\BbbR 

\int 
\BbbR 
[P (x, y; t - \tau )L\scrO (x, y; \tau ) - \scrO (x, y; \tau )LTP (x, y; t - \tau )] dx dy,

(2.12)

which equals zero due to the formal mutual adjointness of L and LT . However, it has
also been pointed out in [7, 36] that the above quantity may not vanish if P (x, y; t)
does not have sufficient decay. Specifically, in order that (2.12) equals zero, we need
the following limits:

lim
X\rightarrow \infty 

\int 
\BbbR 

\partial \scrO (X, y; \tau )

\partial x
P (X, y; t - \tau ) dy = lim

X\rightarrow \infty 

\int 
\BbbR 

\partial P (X, y; \tau )

\partial x
\scrO (X, y; t - \tau ) dy = 0,

(2.13)

lim
X\rightarrow \infty 

\int 
\BbbR 
K(X, y)\scrO (X, y; \tau )P (X, y; t - \tau ) dy

(2.14)

= lim
Y\rightarrow \infty 

\int 
\BbbR 
J(x, Y )\scrO (x, Y ; t - \tau )P (x, Y ; \tau ) dx = 0.

Only when these limits hold for all t and \tau can we ensure that integration by parts
without boundary terms can be carried out to show that (2.12) equals zero.

We focus on the second integral in (2.14) and the other limits can be considered
in a similar way. Since the limit (2.14) must hold for all t and \tau , a necessary condition
for the validity of the CL method can be obtained by setting t = \tau and letting \tau tend
to infinity, which yields

(2.15) lim
y\rightarrow \infty 

E(y) = 0, E(y) :=

\int 
\BbbR 
J(x, y)\scrO (x, y; 0)P (x, y;\infty ) dx.

Here P (x, y;\infty ) is just the function P (x, y) as stated in the beginning of section 2.2,
and now it is clear that (2.15) holds only when P (x, y) has sufficient decay when
y \rightarrow \infty . In our case, when B >

\surd 
3 and | y| is large,

E(y) \approx  - 
\int 
\BbbR 
(y+Bx+3x2y - y3)(x2 - y2+i2xy)

C

(x2 + y2)3
dx =  - C\pi (iB + 4y2  - 1)

4y2
,

whose real part does not vanish as y tends to infinity. Similarly, the other limit
in (2.14) does not hold either. As a result, biased results are generated. Such a
phenomenon has also been numerically validated in Figure 3. When B \leq 

\surd 
3, due to

the fast decay of P (x, y), we observe unbiased results in the simulations.

Remark 2. If the velocities K and J contain poles, then the conditions (2.13)--
(2.14) must be supplemented by the corresponding boundary conditions at poles. We
refer the readers to a recent paper [40] for some discussions on such cases.
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Fig. 3. The decay of E(y) for B = 2.3.

2.4. Asymptotics near \bfitB =
\surd 
3. By this example, we would like to reveal

more on what happens at the critical point B =
\surd 
3. Figure 1 shows that the two

curves, which initially coincide, eventually separate from each other as B increases,
meaning that at least one of the curves is not analytic at point B =

\surd 
3. In this

section, we would like to study the asymptotics around this point and explain how
the analyticity fails.

The most straightforward idea to study the asymptotics is to set B\epsilon =
\surd 
3  - \epsilon 

and expand the associated probability density function P \epsilon (x, y) by

(2.16) P \epsilon (x, y) = P0(x, y) + \epsilon P1(x, y) + \epsilon 2P2(x, y) + \cdot \cdot \cdot .

By setting \epsilon = 0, we see that P 0(x, y) corresponds to the probability density function
for B =

\surd 
3, and it has been shown in the proof of Proposition 2.1 that

(2.17) suppy P
\epsilon = [ - \alpha \epsilon /

\surd 
2, \alpha \epsilon /

\surd 
2], \alpha \epsilon =

\sqrt{} 
1 - 

\sqrt{} 
1 - (B\epsilon )2/3.

Unfortunately, such an expansion does not converge due to the following proposition.

Proposition 2.2. Let P \epsilon (y) be a class of functions defined for every \epsilon \in (0, \delta ),
and the functions satisfy suppP \epsilon (y) = [ - \alpha \epsilon , \alpha \epsilon ]. Then there does not exist a sequence
of functions \{ P0(y), P1(y), \cdot \cdot \cdot \} such that the infinite series

(2.18)

+\infty \sum 
n=0

\epsilon nPn(y)

converges pointwisely to P \epsilon (y) for any \epsilon \in (0, \delta ).

Proof. Note that \alpha \epsilon monotonically decreases as \epsilon increases. Suppose the series
(2.18) converges to P \epsilon (y) for any \epsilon \in (0, \delta ); we know that for \epsilon \in (\delta /2, \delta ) and y \in 
(\alpha \delta /2, \alpha 0), it holds that

P \epsilon (y) =

+\infty \sum 
n=0

\epsilon nPn(y) = 0.

Regarding the series as the power series with respect to \epsilon , we know that for y \in 
(\alpha \delta /2, \alpha 0), the value of P \epsilon (y) must be zero for any \epsilon \in (0, \delta ). This contradicts the
assumption that suppP \epsilon = [ - \alpha \epsilon , \alpha \epsilon ] for \epsilon \in (0, \delta /2).

The above result shows that in Figure 1, the curve of observable predicted by the
CL method is likely to be nonanalytic. Below we will provide a legitimate asymptotic
expansion for P \epsilon (x, y) based on the knowledge of its support.
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2.4.1. The asymptotic expansion. To avoid the divergence problem arising
from the variation of the support, we are going to scale the variable y to align the
support of P \epsilon (x, y) for any \epsilon . Precisely, we let a\epsilon = 1/\alpha \epsilon and construct a new function
\~P \epsilon as

(2.19) \~P \epsilon (x, y) = P \epsilon (x, a\epsilon y)

such that suppy \~P \epsilon = [ - 1/
\surd 
2, 1/

\surd 
2] for any \epsilon , and the original probability density

function can be reconstructed as P \epsilon (x, y) = \~P \epsilon (x, \alpha \epsilon y). Thus the governing equation
of P \epsilon (x, y) is

(2.20)
\partial 

\partial t
\~P \epsilon +

\partial 

\partial x
( \~K\epsilon \~P \epsilon ) + \alpha \epsilon \partial 

\partial y
( \~J\epsilon \~P \epsilon ) =

\partial 2

\partial x2
\~P\epsilon ,

in which \~K\epsilon (x, y) := K(x, a\epsilon y) and \~J\epsilon (x, y) := J(x, a\epsilon y). Note that the Taylor
expansion of a\epsilon is

(2.21) a\epsilon = 1 + a1\epsilon 
1
2 + a2\epsilon + \cdot \cdot \cdot , a1 =

\surd 
2

4
\surd 
3
, a2 =

2\surd 
3
, . . . .

Therefore, we should expand all the quantities with respect to
\surd 
\epsilon instead of \epsilon . Let

(2.22) \~P \epsilon =

+\infty \sum 
k=0

\epsilon 
k
2 \~P k

2
, K\epsilon =

+\infty \sum 
k=0

\epsilon 
k
2 \~K k

2
, J\epsilon =

+\infty \sum 
k=0

\epsilon 
k
2 \~J k

2
.

One can figure out all the terms \~K k
2
and \~J k

2
by the analytical expressions of K(x, y)

and J(x, y). Then by balancing the terms with various orders of \epsilon in (2.20), we can
obtain the equations for \~P k

2
:

(2.23)

\scrO (1) :
\partial 

\partial t
\~P0 +

\partial 

\partial x
( \~K0

\~P0) +
\partial 

\partial y
( \~J0

\~P0) =
\partial 2

\partial x2
\~P0;

\scrO (\epsilon 1/2) :
\partial 

\partial t
\~P 1

2
+

\partial 

\partial x

\Bigl( 
\~K0

\~P 1
2

\Bigr) 
+

\partial 

\partial y

\Bigl( 
\~J0

\~P 1
2

\Bigr) 
+

\partial 

\partial x

\Bigl( 
\~K 1

2

\~P0

\Bigr) 
+

\partial 

\partial y

\Bigl( 
\~J 1
2

\~P0  - a 1
2

\~J0
\~P0

\Bigr) 
=

\partial 2

\partial x2
\~P 1

2
;

\scrO (\epsilon ) :
\partial 

\partial t
\~P1 +

\partial 

\partial x
( \~K0

\~P1) +
\partial 

\partial y
( \~J0

\~P1) +
\partial 

\partial x

\Bigl( 
\~K 1

2

\~P 1
2
+ \~K1

\~P0

\Bigr) 
+

\partial 

\partial y

\Bigl( 
\~J1

\~P0 + \~J 1
2

\~P 1
2
 - a 1

2

\~J0
\~P 1

2
+

\Bigl( 
a2

1
2
 - a1

\Bigr) 
\~J0

\~P0

\Bigr) 
=

\partial 2

\partial x2
\~P1;

\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot .

Thus we can obtain each \~Pk/2 by solving these equations. Due to the appearance of

\epsilon 1/2, when this expansion is extended to negative \epsilon , the function \~P \epsilon (x, y) no longer
represents a probability density function, as implies the nonanalyticity of the solution
provided by the CL method.

The convergence of the series (2.22) can be verified numerically. Instead of solving
(2.23) directly, we adopt an alternative way to find the functions \~Pk/2. In fact, these
quantities are related to the formal expansion (2.16), whose terms satisfy the equations
(2.24)

\partial 

\partial t
Pl +

\partial 

\partial x
(K0Pl) +

\partial 

\partial y
(J0Pl) - 

\partial 

\partial x
(yPl - 1) +

\partial 

\partial y
(xPl - 1) =

\partial 2

\partial x2
Pl, l = 1, 2, . . . ,

D
ow

nl
oa

de
d 

06
/0

3/
21

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE VALIDITY OF CL METHOD A699

which can be derived by inserting (2.16) into the FP equation (1.5) and balancing the
terms with the same orders of \epsilon . It can be verified that by setting

(2.25) \~P0 = P0, \~P 1
2
= a 1

2
y
\partial P0

\partial y
, \~P1 = P1 + a1y

\partial P0

\partial y
+

1

2
a21

2
y2

\partial 2P0

\partial y2
, . . . ,

we can obtain the solutions to (2.23). The method we adopt is to solve (2.24) numer-
ically, and then use (2.25) to convert the results to \~Pk/2. In this process, high-order
derivatives of the solutions are needed in (2.25), which requires us to adopt the Fourier
spectral method described in subsection 2.1.2 to find the numerical solutions.

The computational details are stated as follows. The computational domain is
set to be [ - 5, 5] \times [ - 1, 1], which is sufficiently large since P \epsilon (x, y) decays fast in the
x-direction and has a compact support in the y-direction. We choose N = 480 and
M = 240 in (2.7), and after solving P0 from the original FP equation, we compute P1

to P5 successively by solving (2.24). All the equations are solved until a steady state
is attained. Based on these functions, one can compute \~Pk/2 up to k = 11. Then the
results are inserted back into (2.22) with the infinite series truncated. In Figure 4,
we plot the function P \epsilon (x, y) with \epsilon = 0.02 approximated by different truncations,
which shows the convergence of the series of \~P \epsilon given in (2.22). In particular, we
observe that some oscillations appearing in the early truncations are suppressed as
we increase the number of terms.

Now we study the analyticity of the curves shown in Figure 1. The expectation
value for the observable can be related to the scaled function \~P \epsilon (x, y) by

\langle O\rangle \epsilon =
\int 
\BbbR 

\int 
\BbbR 
O(x+ iy)P \epsilon (x, y) dx dy = a\epsilon 

\int 
\BbbR 

\int 
\BbbR 
O(x+ ia\epsilon y) \~P \epsilon (x, y) dx dy.

The expansion of O(x + ia\epsilon y) can be obtained by substituting the expansion of a\epsilon 

(2.21) to the observable function O(x+iy) = (x+iy)2, which then yields an expansion
of \langle O\rangle \epsilon ,

\langle O\rangle \epsilon =
+\infty \sum 
k=0

\epsilon 
k
2 \langle O\rangle k

2
,(2.26)

Fig. 4. The distribution constructed by expansion (2.22).
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A700 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

where the coefficients \langle O\rangle k/2 can be evaluated by

\langle O\rangle 0 =

\int 
\BbbR 

\int 
\BbbR 
O0

\~P0 dx dy, \langle O\rangle 1
2
=

\int 
\BbbR 

\int 
\BbbR 
(O0

\~P 1
2
+O 1

2

\~P0 + a 1
2
O0

\~P0) dx dy,

\langle O\rangle 1 =

\int 
\BbbR 

\int 
\BbbR 

\Bigl( 
O0

\~P1 +O 1
2

\~P 1
2
+O1

\~P0 + a 1
2
(O0

\~P 1
2
+O 1

2

\~P0) + a1O0P0

\Bigr) 
dx dy, \cdot \cdot \cdot .

Some numerical values of \langle O\rangle k/2 are tabulated in Table 1, from which one can see
that \langle O\rangle k/2 with half-integer orders are all very small. Actually, using the relations
(2.25), one can show that

\langle O\rangle k
2
=

\left\{   
\int 
\BbbR 

\int 
\BbbR 
O(x+ iy)P k

2
(x, y) dx dy if k is even,

0 if k is odd.

This indicates that the asymptotic expansion for the expectation \langle O\rangle \epsilon contains only
integer orders, as allows us to extend the expansion to negative \epsilon , which matches
the exact values of the integral (see Figure 5). Unfortunately, the solution of the FP
equation cannot adopt the form of the series (2.22) for \epsilon < 0, causing failure of the
CL computation.

2.4.2. Transition to the global support. Despite the nonanalyticity of the
observable predicted by the CL method, we expected that the transition is smooth
when the global support appears. For \epsilon < 0, assume that

P \epsilon (x, y) \approx C\epsilon 

(x2 + y2)3
for x2 + y2 \gg 1.

We conjecture that the coefficient C\epsilon has the form exp(\alpha 0/\epsilon ), with \alpha 0 being a con-
stant. Such a form allows a C\infty transition from zero to a nonzero value, leading to

Table 1
Coefficients of \langle O\rangle k/2 in (2.26).

\langle O\rangle 0 0.3579 - 0.2284i \langle O\rangle 1
2

 - 2.4\times 10 - 14 + 2.3\times 10 - 15i

\langle O\rangle 1 0.1136 + 0.0864i \langle O\rangle 3
2

3.1\times 10 - 10 + 2.1\times 10 - 12i

\langle O\rangle 2  - 0.0165 + 0.0360i \langle O\rangle 5
2

 - 3.6\times 10 - 7 + 2.0\times 10 - 9i

\langle O\rangle 3  - 0.0089 - 0.0030i \langle O\rangle 7
2

 - 1.9\times 10 - 4 + 4.7\times 10 - 9i

Fig. 5. The expectations obtained from expansion (2.22) versus \epsilon .
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ON THE VALIDITY OF CL METHOD A701

Fig. 6. Py at point y = 1.5 and 2 for different \epsilon .

the smoothness of the value of \langle O\rangle \epsilon predicted by the CL method. We verify this nu-
merically by fitting the marginal probability density function Py(y) (defined in (2.9))
for \epsilon < 0. It can be expected that Py(y) \propto C(y) exp(\alpha 0/\epsilon ) for sufficiently large y.
Here we pick y = 1.5 and y = 2 and do the curve fitting in Figure 6. Note that when \epsilon 
is close to zero, the value of P \epsilon (x, y) is very small, so that the accuracy is affected by
the round-off error. However, for \epsilon <  - 0.4, the numerical solution perfectly fits our
conjecture. This indicates the C\infty transition from local support to global support.

2.5. Implications of the model problem. By a careful analysis of the model
problem with action (1.11), we have gained better understanding of some properties
of the CL method. In general, the CL method looks quite fragile. For every CL result
that looks convergent, we have to analyze the decay of the probability density function
to show its validity. This can be done for some simple cases. For example, in the
one-dimensional case with S(x) dominated by the monomial xk, we can use the same
method as in section 2.2 to show that the decay rate is P (x, y) \approx (x2 + y2) - (k - 1).
However, for the multidimensional case, such analysis will become more nontrivial,
and this becomes one of obstacles in the application of the CL method. When the
probability density function does not decay sufficiently fast, biased results or even
arithmetic overflow may occur. Recently, some numerical techniques to fix such issues
have been proposed in [11, 37], which require further numerical analysis to understand
their numerical error.

Without additional fixes, the CL method may still be valid for a wide range
of observables if the probability density function is localized. Such existence usually
depends on the parameters in the action. Unfortunately, as the parameter changes, the
localization of the support may vanish in an unnoticeable way, which also introduces
difficulty in judging the legitimacy of the numerical solution. Even worse, in the
field theories, we can prove that such localized probability does not exist if the CL
dynamics is not intervened. This will be detailed in the next section.

3. Nonexistence of localized probability in lattice field theories. In lat-
tice field theories, the variables in the integral are a collection of group elements
defined on the lattice. Specifically, we denote lattice nodes in the (1+ d)-dimensional
spacetime by the indices

x = (t, x1, . . . , xd), t = 0, . . . , N0  - 1, x1 = 0, . . . , N1  - 1, . . . , xd = 0, . . . , Nd  - 1.

Here we have assumed that all the lattice nodes are indexed by integers. For simplicity,
we let \scrX = (\BbbZ /N0\BbbZ )\times (\BbbZ /N1\BbbZ )\times \cdot \cdot \cdot \times (\BbbZ /Nd\BbbZ ) be the range of x, which also indicates
the periodic boundary condition in our assumption. Below we are going to formulate
the CL method for lattice field theories with general groups. We emphasize here that
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A702 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

this is the first complete mathematical formulation of the CL method since it was
proposed.

For each x \in \scrX and each \mu = 0, 1, . . . , d, we define a ``link variable"" Ux,\mu \in G,
where G is a compact Lie group with identity element e and its Lie algebra being g.
Let \{ U\} \in G(d+1)N0N1\cdot \cdot \cdot Nd be the collection of all these link variables Ux,\mu . Then both
the observable O(\cdot ) and the action S(\cdot ) are functions of \{ U\} , and the expectation of
the observable is given by

\langle O\rangle = 1

Z

\int 
GN

O(\{ U\} ) exp
\Bigl( 
 - S(\{ U\} )

\Bigr) 
d\{ U\} , Z =

\int 
GN

exp
\Bigl( 
 - S(\{ U\} )

\Bigr) 
d\{ U\} ,

where the integral is defined by the Haar measure of G, and we have used the short-
hand N = (d+ 1)N0N1 \cdot \cdot \cdot Nd for simplicity.

To apply the CL method to this problem when S(\cdot ) is complex, some additional
assumptions need to be imposed:
(A1) The group G is equipped with a Riemannian metric \langle \cdot , \cdot \rangle g for every g \in G, and

the metric is bi-invariant.
(A2) The group G has a complexification

(3.1) G\BbbC = G \cdot exp(ig),

whose Lie algebra is g\BbbC = g\oplus ig.
(A3) Both O(\cdot ) and S(\cdot ) can be extended to GN

\BbbC as holomorphic functions.
By (A1), we can assume that \{ X1, X2, . . . , Xm\} is an orthonormal basis of g under
the metric \langle \cdot , \cdot \rangle e. The metric on G\BbbC is chosen as the right-invariant metric:

(3.2)
\langle X1 + iX \prime 

1, X2 + iX \prime 
2\rangle e = \langle X1, X2\rangle e + \langle X \prime 

1, X
\prime 
2\rangle e \forall X1, X2, X

\prime 
1, X

\prime 
2 \in g,

\langle Z1, Z2\rangle g = \langle (dRg - 1)g(Z1), (dRg - 1)g(Z2)\rangle e \forall g \in G\BbbC and Z1, Z2 \in TgG\BbbC ,

where Rh : g \mapsto \rightarrow gh is the right translation operator, so that (dRh)g is the map
from the tangent space TgG\BbbC to the tangent space TghG\BbbC . Note that when G is
non-Abelian, this metric on G\BbbC is in general not bi-invariant. The metric on GN

\BbbC can
then be naturally defined by summing up the metrics for all the components. Since
each element in g can be viewed as a right-invariant vector field on G, we will use
the notation \scrL Xa

x,\mu 
to denote the Lie derivative with respect to the link variable Ux,\mu 

along the right-invariant vector field Xa and use \scrL Y a
x,\mu 

to denote the Lie derivative
with respect to the link variable Ux,\mu along Y a = iXa. Thus by (A3), we know that
S satisfies the Cauchy--Riemann equations

\scrL Xa
x,\mu 

Re S = \scrL Y a
x,\mu 

Im S, \scrL Xa
x,\mu 

Im S =  - \scrL Y a
x,\mu 

Re S.

The equations for O(\cdot ) are similar. Let Ka
x,\mu =  - \scrL Xa

x,\mu 
ReS and Ja

x,\mu =  - \scrL Xa
x,\mu 

ImS.
We can then write the CL equation:

dUx,\mu =

m\sum 
a=1

(dRUx,\mu 
)e
\bigl( \bigl[ 
Ka

x,\mu (\{ U\} ) dt+ dwa
x,\mu 

\bigr] 
Xa +

\bigl[ 
Ja
x,\mu (\{ U\} ) dt

\bigr] 
Y a
\bigr) 
,

x \in \scrX , \mu = 0, 1, . . . , d,(3.3)

where the Brownian motions wa
x,\mu are independent of each other for different x, \mu , a,

and we take the Stratonovich interpretation of the stochastic differential equation in

D
ow

nl
oa

de
d 

06
/0

3/
21

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE VALIDITY OF CL METHOD A703

(3.3). Since S is complex-valued, the link variable Ux,\mu is generally in G\BbbC . Thus the
CL method approximates the observable by

\langle O\rangle \approx 1

N

N\sum 
k=1

O
\Bigl( 
\{ U(T + k\Delta T )\} 

\Bigr) 
for sufficiently large T and sufficient time difference \Delta T . Numerically, (3.3) is solved
following

(3.4)

Ux,\mu (t+\Delta t)

\approx exp

\Biggl( 
m\sum 

a=1

\Bigl[ \Bigl( 
\Delta tKa

x,\mu (\{ U(t)\} ) +
\surd 
2\Delta t \eta ax,\mu 

\Bigr) 
Xa +\Delta t Ja

x,\mu (\{ U(t)\} )Y a
\Bigr] \Biggr) 

Ux,\mu (t),

where exp(\cdot ) is the exponential map from g\BbbC to G\BbbC , and each \eta ax,\mu is a normally
distributed random variable with mean zero and standard deviation one, generated
at each time step.

In this presentation, G can be regarded as the counterpart of the real axis, and
then G\BbbC is the counterpart of the complex plane. The verification of the CL method
in the lattice field theory is similar to Theorem 1.1. We first define the nonnegative
probability density function as P (\{ U\} ; t) for all \{ U\} \in GN

\BbbC . The evolution equation
of P (\{ U\} ; t) is
(3.5)

\partial P

\partial t
+
\sum 
x\in \scrX 

d\sum 
\mu =0

m\sum 
a=1

\Bigl( 
\scrL Xa

x,\mu 
(Ka

x,\mu P ) + \scrL Y a
x,\mu 

(Ja
x,\mu P )

\Bigr) 
=
\sum 
x\in \scrX 

d\sum 
\mu =0

m\sum 
a=1

\scrL Xa
x,\mu 

\scrL Xa
x,\mu 

P,

where

Ka
x,\mu =  - \scrL Xa

x,\mu 
ReS, Ja

x,\mu =  - \scrL Xa
x,\mu 

ImS.

Similarly to (1.9), we define the complex-valued function \rho (\{ U\} ; t) for \{ U\} \in GN as
the solution of

(3.6)
\partial \rho 

\partial t
+
\sum 
x\in \scrX 

d\sum 
\mu =0

m\sum 
a=1

\scrL Xa
x,\mu 

[(Ka
x,\mu + iJa

x,\mu )\rho ] =
\sum 
x\in \scrX 

d\sum 
\mu =0

m\sum 
a=1

\scrL Xa
x,\mu 

\scrL Xa
x,\mu 

\rho .

The initial condition of (3.6) is \rho (\{ U\} ; 0) = p(\{ U\} ), where p(\{ U\} ) is a probability
density function on GN . To describe the initial condition for (3.5), we need to use
the Cartan decomposition (3.1). In fact, the map G \times g \rightarrow G\BbbC defined by (3.1) is
a diffeomorphism. Therefore for every Ux,\mu \in G\BbbC , there exist unique Vx,\mu \in G and
Wx,\mu \in exp(ig) such that Ux,\mu = Vx,\mu Wx,\mu . Thus we can define the initial condition
of (3.5) as

(3.7) P (\{ U\} ; t) = p(\{ V \} )
\prod 
x\in \scrX 

d\prod 
\mu =0

\delta e(Wx,\mu ), \{ U\} \in GN
\BbbC ,

where \delta e(\cdot ) is the Dirac function defined on exp(ig) whose value is infinity at the
identity element. Now we are ready to state the theorem describing the validity of
the CL method.
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A704 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

Theorem 3.1. Let P (\{ U\} ; t) be the unique steady-state solution of (3.5) with
the initial condition (3.7), and let \rho (\{ U\} ; t) be the solution of (3.6) with the initial
condition \rho (\{ U\} ; 0) = p(\{ U\} ). We further suppose that \scrO (\{ U\} ; t) with \{ U\} \in GN

\BbbC 
and t \geq 0 satisfies the backward Kolmogorov equation

\partial \scrO 
\partial t

=
\sum 
x\in \scrX 

d\sum 
\mu =0

m\sum 
a=1

\Bigl( 
Ka

x,\mu \scrL Xa
x,\mu 

\scrO + Ja
x,\mu \scrL Y a

x,\mu 
\scrO 
\Bigr) 

+
\sum 
x\in \scrX 

d\sum 
\mu =0

m\sum 
a=1

\scrL Xa
x,\mu 

\scrL Xa
x,\mu 

\scrO , \scrO (\{ U\} ; 0) = O(\{ U\} ),

and it holds that

(3.8)

\int 
GN

\BbbC 

\scrO (\{ U\} ; \tau )P (\{ U\} ; t - \tau ) d\{ U\} =

\int 
GN

\BbbC 

O(\{ U\} )P (\{ U\} ; t) d\{ U\} 

for any t > 0 and \tau \in [0, t]. Then for any t > 0,

(3.9)

\int 
GN

O(\{ U\} )\rho (\{ U\} ; t) d\{ U\} =

\int 
GN

\BbbC 

\scrO (\{ U\} )P (\{ U\} ; t) d\{ U\} .

In the above theorem, the equality (3.8) corresponds to the assumption (H1) in
subsection 1.1. The assumption (H3) is no longer needed due to the compactness of
G. If we further assume that (3.6) has a steady-state solution

lim
t\rightarrow +\infty 

\rho (\{ U\} ; t) = \rho \infty (\{ U\} ) = 1

Z
exp

\Bigl( 
 - S(\{ U\} )

\Bigr) 
, \{ U\} \in GN ,

then we can take the limit t \rightarrow +\infty of (3.9) to validate the CL method. The proof
of this theorem is completely parallel to the proof of Theorem 1.1, and we omit its
details.

Again, this theorem only gives us an unsatisfactory result due to the strong as-
sumption (3.8). To ensure that (3.8) holds, we again need to have conditions similar
to (2.14). Note that (2.13) is not necessary again due to the compactness of G. The
corresponding property holds for any observable O only if the support of P (\cdot ; t) is
compact for large t. Unfortunately, such localized probability density function does
not exist, as will be proven in the following subsections. To begin with, we study a
simple case where G = U(1).

3.1. Analysis for \bfitU (1) theories. Due to its simplicity, the U(1) theory is
often employed to understand the properties of the CL method that are observed in
other group theories [7, 34]. Here we also use this simple case to demonstrate our
claims without involving the heavy notations in the group theory. When G = U(1) =
\{ exp(i\theta ) | \theta \in \BbbR \} , its Lie algebra g is the imaginary axis, and the metric can just be
defined by

\langle X,Y \rangle e = X\dagger Y \forall X,Y \in g,

where \dagger denotes the complex conjugate. The complexification of G is G\BbbC = \{ exp(i\theta ) | 
\theta \in \BbbC \} = \BbbC \setminus \{ 0\} . Therefore the action S, as a function on GN

\BbbC , can be written as

S(ei\theta 1 , ei\theta 2 , . . . , ei\theta N ) = S
\Bigl( 
ei(x1+iy1), ei(x2+iy2), . . . , ei(xN+iyN )

\Bigr) 
,
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where we have assumed that \theta k = xk+iyk for k = 1, . . . , N . Let \bfitx = (x1, x2, . . . , xN )T ,
\bfity = (y1, y2, . . . , yN )T and define

\=S(\bfitx ,\bfity ) = S
\Bigl( 
ei(x1+iy1), ei(x2+iy2), . . . , ei(xN+iyN )

\Bigr) 
.

Then \=S(\bfitx ,\bfity ) is periodic with respect to x1, x2, . . . , xN , and the period is 2\pi for each
variable. With such notations, the CL equation can be written similarly to (1.4):

(3.10)

\Biggl\{ 
d\bfitx = \bfitK (\bfitx ,\bfity ) dt+ d\bfitw , \bfitK (\bfitx ,\bfity ) = Re( - \nabla \bfitx 

\=S(\bfitx ,\bfity )),

d\bfity = \bfitJ (\bfitx ,\bfity ) dt, \bfitJ (\bfitx ,\bfity ) = Im( - \nabla \bfitx 
\=S(\bfitx ,\bfity )),

where \bfitw = (w1, . . . , wN )T with each wk being an independent Brownian motion. The
initial condition satisfies \bfity (0) = 0. Now we are going to study (3.10), which has much
simpler notations.

In order to localize the probability density function, we need to find a bounded,
simply connected domain \Omega \subset \BbbR N such that \bfitJ (\bfitx ,\bfity ) \cdot \bfitn (\bfity ) \leq 0 for all \bfitx \in [0, 2\pi )N

and \bfity \in \partial \Omega . Here \bfitn (\bfity ) denotes the outer unit normal vector of \Omega at point \bfity . A two-
dimensional case is illustrated in Figure 7. Note that due to the Brownian motion in
the \bfitx direction, the domain \Omega must be the same for every \bfitx . Thus once the probability
density function is completely attracted into [0, 2\pi )N \times \Omega , it will forever be confined
therein. Here \Omega refers to the closure of \Omega . Since \=S is periodic with respect to \bfitx and \bfitJ 
is the partial gradient of Im \=S with respect to \bfitx , by the divergence theorem, we have

(3.11)

\int 
[0,2\pi )N

\bfitJ (\bfitx ,\bfity ) d\bfitx = 0

for any \bfity . Since \bfitn only depends on \bfity , it follows that
\int 
[0,2\pi )N

\bfitJ (\bfitx ,\bfity ) \cdot \bfitn (\bfity ) d\bfitx = 0.

Therefore \bfitJ (\bfitx ,\bfity ) \cdot \bfitn (\bfity ) \leq 0 for any \bfitx \in [0, 2\pi )N implies \bfitJ (\bfitx ,\bfity ) \cdot \bfitn (\bfity ) = 0 for any
\bfitx \in [0, 2\pi )N . By Cauchy--Riemann equations, \bfitJ (\bfitx ,\bfity ) = \nabla \bfity (Re \=S). Therefore we
conclude that the existence of localized probability density function requires

\nabla \bfity (Re \=S) \cdot \bfitn = 0 \forall \bfitx \in [0, 2\pi )N and \bfity \in \partial \Omega .

The holomorphism of \=S indicates that Re \=S is a harmonic function. Therefore its
periodicity with respect to \bfitx , together with the above Neumann boundary condition,
shows that Re \=S is a constant. As a consequence, \=S is a constant everywhere, as
corresponds to the trivial case of the CL equation.

By the above analysis, we know that for an irreducible action S (meaning that
the essential number of independent variables equals N), if the probability density

y1
y2

x1, x2

\Omega 

Fig. 7. Localization of the distribution. The arrows denote the velocity field.
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A706 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

function is localized, it must be localized to [0, 2\pi )N \times \{ \bfity 0\} for some \bfity 0 \in \BbbR N ,
corresponding to the case where \=S(\bfitx ,\bfity \bfzero ) is real, which is equivalent to a translated
real action. This is a pessimistic result, which indicates that when applying the
CL method, one always needs to check whether the condition (3.8) holds, which is
highly nontrivial since P (\{ U\} ; t) is not directly available. More precisely, due to the
periodicity of O(x), one can see from its Fourier expansion that O(x+ iy) is expected
to grow at least exponentially in the imaginary direction. To cover this class of
observables, we need the probability density function to have a decay rate faster than
any exponential functions, which looks like a strong assumption. Such possibility will
be discussed in our future works. For a given observable, we refer the readers to [37]
for a recent work on the estimation of the boundary terms. The same phenomenon
also exists for general group G, as will be detailed in the next subsection.

Remark 3. In the above discussion, one missing case is that \Omega is anm-dimensional
bounded submanifold of \BbbR N with (m - 1)-dimensional boundary, where 0 < m < N . In
this case, we can reduce the 2N -dimensional harmonic equation to an 2m-dimensional
problem by Cauchy--Riemann equations. Then using the same technique, we can show
that \Omega is bounded only if S is a constant on \Omega . In the directions perpendicular to
\Omega , the action may be ``real."" An example is \=S(x1, x2, y1, y2) = i + cos(x1 + iy1), for
which we can have \Omega = \{ 0\} \times [a, b] for any a and b since \=S does not depend on x2 and
y2. In such cases, the action is essentially still a translated real action. Here we omit
the details of the proof due to the length constraints of the paper.

3.2. Analysis for lattice gauge theories. For lattice gauge theories, the
derivation follows the same idea as the U(1) theories. However, when G is non-
Abelian, the separation of the ``real part"" and the ``imaginary part"" becomes non-
trivial. To this aim, we define two operators on G\BbbC for any g \in G\BbbC :

Lg : h \mapsto \rightarrow gh, \Psi g : h \mapsto \rightarrow ghg - 1,

where Lg is the left translation operator, and \Psi g is known as the inner automorphism.
It is obvious that Lg = Rg\Psi g. Then the following proposition holds.

Proposition 3.2. Let U\tau be a curve in G\BbbC parametrized by \tau \in \BbbR . Suppose
U\tau = V\tau W\tau for V\tau \in G and W\tau \in exp(ig), and

(3.12)
dV\tau 

d\tau 
= (dRV\tau 

)e(X\tau ),
dW\tau 

d\tau 
= (dRW\tau 

)e(Y\tau )

for some X\tau \in g and Y\tau \in ig. Then

(3.13)
dU\tau 

d\tau 
= (dRU\tau 

)e

\Bigl( 
X\tau + (d\Psi V\tau 

)eY\tau 

\Bigr) 
.

Inversely, if (3.13) holds, then (3.12) holds. Furthermore, if the vector n\tau \in TW\tau 

exp(ig) satisfies \biggl\langle 
dW\tau 

d\tau 
, n\tau 

\biggr\rangle 
W\tau 

= 0,

then

(3.14)

\biggl\langle 
dU\tau 

d\tau 
, (dLV\tau )W\tau (n\tau )

\biggr\rangle 
U\tau 

= 0.
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The proof of this proposition will be deferred to Appendix B. From this result,
we can rewrite the CL equation (3.3) by separating the ``real"" and ``imaginary"" parts.
The details are given in the following corollary.

Corollary 3.3. In the CL equation (3.3), if Ux,\mu = Vx,\mu Wx,\mu for Vx,\mu \in G and
Wx,\mu \in exp(ig), then

dVx,\mu =

m\sum 
a=1

\bigl( 
Ka

x,\mu (\{ U\} ) dt+ dwa
x,\mu 

\bigr) 
(dRVx,\mu 

)e(X
a),

dWx,\mu =

m\sum 
a=1

\bigl( 
Ja
x,\mu (\{ U\} ) dt

\bigr) 
(dRWx,\mu 

)e

\Bigl( 
(d\Psi V  - 1

x,\mu 
)e(Y

a)
\Bigr) 
.

This corollary is a straightforward result of the equivalence between (3.12) and
(3.13), and we omit its proof. It shows that the Brownian motion allows Vx,\mu to
explore everywhere in G. Therefore if P (\{ U\} ; t) has a compact support for all t, the
support has the form \Omega = GN \cdot \Omega I , where \Omega I is a domain in [exp(ig)]N . Like in the
U(1) theory, such \Omega I exists only when the action S is a constant. To show this, we
need the following lemma, which is the counterpart of (3.11) in the U(1) theory.

Lemma 3.4. Let f be a differentiable function on G\BbbC , and n \in TW exp(ig) for
some W \in exp(ig). Then\int 

G

\Biggl\langle 
(dRVW )e

\Biggl( 
m\sum 

a=1

\scrL Xaf(VW )Y a

\Biggr) 
, (dLV )W (n)

\Biggr\rangle 
VW

dV = 0,

where \scrL Xa denotes the Lie derivative along the right translationally invariant vector
field generated by Xa.

Proof. Suppose n = (dRW )e(Y ) for some Y \in ig. Then

(dLV )W (n) = (dLV )W ((dRW )e(Y )) = (dRW )V ((dLV )e(Y )).

According to the right translational invariance of the inner product, we have\Biggl\langle 
(dRVW )e

\Biggl( 
m\sum 

a=1

\scrL Xaf(VW )Y a

\Biggr) 
, (dLV )W (n)

\Biggr\rangle 
VW

=

\Biggl\langle 
(dRV )e

\Biggl( 
m\sum 

a=1

\scrL Xaf(VW )Y a

\Biggr) 
, (dLV )e(Y )

\Biggr\rangle 
V

.

By further assuming Y = iX for X \in g and using the definition of the metric (3.2),
we can rewrite the above expression as\Biggl\langle 

(dRVW )e

\Biggl( 
m\sum 

a=1

\scrL Xaf(VW )Y a

\Biggr) 
, (dLV )W (n)

\Biggr\rangle 
VW

=

\Biggl\langle 
(dRV )e

\Biggl( 
m\sum 

a=1

\scrL Xa \~f(V )Xa

\Biggr) 
, (dLV )e(X)

\Biggr\rangle 
V

,

where \~f(V ) = f(VW ). Thus we can fix W and consider all terms on the right-hand
side of the equation as objects on G. From this point of view, the right-hand side is
in fact the Lie derivative of \~f along the left-invariant vector field generated by X \in g.
According to [26, Theorem 14.35, Corollary 16.13], its integral equals zero.
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A708 ZHENNING CAI, XIAOYU DONG, AND YANG KUANG

Now we are ready to state and prove our main result.

Theorem 3.5. Suppose there exists a bounded, simply connected domain \Omega I \subset 
[exp(ig)]N such that for \Omega = GN \cdot \Omega I \subset GN

\BbbC ,

(3.15) \langle Z(\{ U\} ), n(\{ U\} )\rangle \{ U\} \leq 0 \forall \{ U\} \in \partial \Omega ,

where n denotes the outer unit normal of \Omega , and Z(\{ U\} ) is the velocity field

(3.16) Z(\{ U\} ) =
\bigoplus 
x,\mu 

m\sum 
a=1

(dRUx,\mu 
)e
\bigl( 
Ka

x,\mu (\{ U\} )Xa + Ja
x,\mu (\{ U\} )Y a

\bigr) 
.

Then S is a constant everywhere.

Proof. For \{ W\} \in \partial \Omega I , we can write the outer unit normal of \Omega I in the following
form:

n(\{ W\} ) =
\bigoplus 
x,\mu 

nx,\mu (\{ W\} ), nx,\mu (\{ W\} ) \in TWx,\mu 
exp(ig).

Since \partial \Omega = GN \cdot \partial \Omega I , for any \{ U\} \in \partial \Omega , we can find \{ V \} \in GN and \{ W\} \in [exp(ig)]N

such that Ux,\mu = Vx,\mu Wx,\mu . Then according to (3.14), the outer normal vector of \Omega 
at \{ U\} \in \partial \Omega is

n\{ U\} =
\bigoplus 
x,\mu 

(dLVx,\mu 
)Wx,\mu 

(nx,\mu (\{ W\} )),

and thus

\langle Z(\{ U\} ), n(\{ U\} )\rangle \{ U\} 

=
\sum 
x,\mu 

\Biggl\langle 
(dRUx,\mu )e

\Biggl( 
m\sum 

a=1

Ja
x,\mu (\{ U\} )Y a

\Biggr) 
, (dLVx,\mu )Wx,\mu (nx,\mu (\{ W\} ))

\Biggr\rangle 
Ux,\mu 

.

Since Ja
x,\mu (\{ U\} ) denotes the derivative of  - ImS along RVx,\mu 

(Xa), we see from
Lemma 3.4 that \int 

GN

\langle Z(\{ U\} ), n(\{ U\} )\rangle \{ U\} d\{ V \} = 0.

By (3.15), the value of \langle Z(\{ U\} ), n(\{ U\} )\rangle \{ U\} must be zero for every \{ U\} \in \partial \Omega , which
can be considered as the homogeneous Neumann boundary condition of ReS on
\partial \Omega due to the fact that Ja

x,\mu can also be regarded as the derivative of ReS along
RUx,\mu 

(Y a), and Ka
x,\mu plays no role in the inner product \langle Z(\{ U\} ), n(\{ U\} )\rangle \{ U\} . Fur-

thermore, the holomorphism of S(\{ U\} ) indicates that ReS is harmonic. Therefore
by the uniqueness of the solutions to elliptic equations [44, Proposition 7.6], we know
that the real part of S is a constant, and thus S is also a constant.

4. Localized probability density functions with gauge cooling tech-
nique. The analysis in section 3 reveals the reason why the application of the CL
method is highly delicate. As mentioned in section 1, the method became successful
mainly after the method of gauge cooling was proposed [41]. Before this work, the
idea of gauge cooling already existed in some literature [12, 4], known as gauge fix-
ing, which is used to study some simple models. In [13], the study of gauge fixing
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is extended to the analysis of gauge cooling for the one-dimensional SU(n) theory,
and it is found that localized probability density functions can sometimes be obtained
after applying the gauge cooling technique. However, this is not guaranteed by gauge
cooling, and in [13], the authors also showed some cases where the probability density
functions are global even after gauge cooling is applied. In such cases, it appears in
the numerical experiments in [13] that some legitimate results can also be generated.
According to our observation in section 2, such results may also be biased but only
with small deviations from the exact integrals. In this work, we will restudy these
examples and get a deeper understanding of the gauge cooling technique. To begin
with, we will briefly review how gauge cooling works in the lattice field theory.

4.1. Review of the gauge cooling technique. The gauge cooling technique
is developed based on the gauge invariance of the lattice field theory. For the com-
plexified gauge field \{ U\} \in GN

\BbbC , we introduce the gauge transformation by

(4.1) \widetilde Ux,\mu = g - 1
x Ux,\mu gx+\^\mu \forall x \in \scrX , \forall \mu = 0, 1, . . . , d,

where gx \in G\BbbC is defined for every x \in \scrX , and \^\mu refers to the canonical unit vector
(0, . . . , 0, 1, 0, . . . , 0)T whose \mu th component is 1. Here we remind the readers that
the periodic boundary condition is used so that x + \^\mu is always well defined. After
the transformation, a new field \{ \widetilde U\} is formed by the link variables \widetilde Ux,\mu . In the gauge
theory, both the observable and the action are invariant under gauge transformation:

O(\{ \widetilde U\} ) = O(\{ U\} ), S(\{ \widetilde U\} ) = S(\{ U\} ).

As a result, we can apply any gauge transformation at any time during the evolution
of the CL equation, which does not introduce any biases. Therefore, after each time
step (3.4), we can choose suitable gx \in G\BbbC for each x \in \scrX and apply the gauge
transformation (4.1) to \{ U(t)\} so that the dynamics can hopefully be stabilized. To
choose gx appropriately, we let F (\{ U\} ) for all \{ U\} \in GN

\BbbC be the distance between
\{ U\} and the submanifold GN , and then solve the following minimization problem:

(4.2) argmin
gx\in G\BbbC for all x\in \scrX 

F (\{ \widetilde U\} ).

Gauge cooling refers to the gauge transformation (4.1) using the solution of the opti-
mization problem (4.2). We hope that such a choice of gx can help pull the sample field
closer to GN , causing a faster decay of the probability density function, so that the
boundary terms can be reduced or eliminated. A formal justification of this method
can be found in [30], which shows that the gauge cooling is unbiased. Numerically, the
optimization problem (4.2) is solved by the gradient descent method with a sufficient
number of iterations [41, 2].

Once F (\cdot ) is chosen, we can define the submanifold

M =
\Bigl\{ 
\{ U\} 

\bigm| \bigm| \bigm| F (\{ U\} ) \leq F (\{ \widetilde U\} ) for any gx, x \in \scrX 
\Bigr\} 
,

which is the set of fields with ``optimal guage"" that minimizes the distance to GN .
The gauge cooling technique ensures that the field stays on M in the CL method.
Therefore the governing equation can be formulated by mapping the right-hand side
of (3.3) to the tangent space of M , and this mapping is linear but depends on the
choice of the distance F .
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By restricting the dynamics on the manifold M , we may have a chance to localize
the probability density function since the argument in the previous section no longer
holds. Deeper analysis of the gauge cooling technique requires the detailed form of
F (\{ U\} ). One general choice of the distance function is

(4.3) F (\{ U\} ) = 1

2

\sum 
x\in \scrX 

d\sum 
\mu =0

\langle Yx,\mu , Yx,\mu \rangle e.

Here Yx,\mu \in ig appears in the Cartan decomposition Ux,\mu = Vx,\mu exp(Yx,\mu ). Interest-
ingly, with such a distance function, we can find that gauge cooling does not have any
effect when G is an Abelian group, including the simplest U(1) theory. The result
will be proven in the following subsection.

4.2. Gauge cooling for Abelian groups. Gauge cooling takes effect only
when the gauge field does not lie on the manifold M . However, when G is Abelian
(so that G\BbbC is also Abelian), the CL dynamics automatically ensures that the field
always stays on M . The details are given in the following theorem.

Theorem 4.1. Suppose G is an Abelian group and the distance function F (\{ U\} )
is defined by (4.3). Then the CL equation (3.3) guarantees that \{ U(t)\} \in M for all t
if the initial condition \{ U(0)\} \in M .

Proof. Since G is an Abelian group, we can assume that gx = exp(hx) and Ux,\mu =
Vx,\mu exp(Yx,\mu ) for hx, Yx,\mu \in ig, so that the gauge transformation (4.1) becomes

(4.4) \widetilde Ux,\mu = Vx,\mu exp(Yx,\mu  - hx + hx+\^\mu ) \forall x \in \scrX , \forall \mu = 0, 1, . . . , d.

Here it suffices to choose gx \in exp(ig) since adding a factor in G does not change the

distance function F (\{ \widetilde U\} ). Thus the distance function turns out to be

F (\{ \widetilde U\} ) = 1

2

\sum 
x\in \scrX 

d\sum 
\mu =0

\langle Yx,\mu  - hx + hx+\^\mu , Yx,\mu  - hx + hx+\^\mu \rangle e.

This is a quadratic function in the linear space ig, so that the minimization problem
(4.2) can be solved by solving the first-order optimality condition:

(4.5)

d\sum 
\mu =0

(2hx  - hx - \^\mu  - hx+\^\mu ) =

d\sum 
\mu =0

(Yx,\mu  - Yx - \^\mu ,\mu ) \forall x \in \scrX .

This equation has the form of a discrete Poisson equation with periodic boundary
condition, and therefore the solution is unique up to a constant, which does not
change the gauge transformation. This also indicates that the manifold M can be
described by

M =

\Biggl\{ 
\{ U\} 

\bigm| \bigm| \bigm| \bigm| \bigm| 
d\prod 

\mu =0

Ux,\mu U
 - 1
x - \^\mu ,\mu \in G\forall x \in \scrX 

\Biggr\} 
,

since \{ U\} \in M indicates that the right-hand side of (4.5) is zero.
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We assume that the initial value of \{ U(0)\} lies on M . Since G is Abelian, the
inner automorphism \Psi g is the identity operator. According to Corollary 3.3, we can
derive the following equation for Yx,\mu :

dYx,\mu =

m\sum 
a=1

Ja
x,\mu (\{ U\} )Y a dt.

If we can show that

(4.6)

d\sum 
\mu =0

(Ja
x,\mu  - Ja

x - \^\mu ,\mu ) = 0 \forall x \in \scrX , \forall a = 1, . . . ,m,

then it is clear that the right-hand side of (4.5) will remain zero if its initial value is
zero. The Equations (4.6) can be seen from the gauge invariance of the action S(\{ U\} ).
For given x \in \scrX and a = 1, . . . ,m, consider the gauge transformation

\~Ux,\mu (\tau ) = exp( - \tau Xa)Ux,\mu , \~Ux - \^\mu ,\mu (\tau ) = Ux - \^\mu ,\mu exp(\tau X
a) \forall \mu = 0, 1, . . . , d,

and other components of \{ \widetilde U\} stay unchanged. Let \widetilde S(\tau ) = S(\{ \widetilde U(\tau )\} ) for \tau \in \BbbR . By
chain rule, it is straightforward to verify that

Im
d\widetilde S
d\tau 

=

d\sum 
\mu =0

\bigl( 
Ja
x,\mu  - Ja

x - \^\mu ,\mu 

\bigr) 
.

The gauge invariance of S shows that \widetilde S is a constant. Therefore the above derivative
is zero, meaning that (4.6) holds.

The above theorem shows that for the exact CL dynamics, gauge cooling does not
change the field. However, this only refers to the exact dynamics, meaning that no
finite-digit arithmetic is applied in the computation. Numerically, due to the inexact
computer arithmetic, the field may deviate from the manifold M . In this case, the
gauge cooling technique can act as a projection to keep the field on M , which also
helps stabilize the dynamics. This is used in a recent work [23], where the U(1) gauge
theory is considered. In fact, even in the real Langevin dynamics, in which we are
sure that gauge cooling has no effect, applying such a technique also helps avoid the
possible instability produced by computer arithmetic [41]. Next, we are going to focus
on the SU(n) theory, which is non-Abelian so that gauge cooling is expected to be
effective.

Remark 4. The distance function used in [23] is

F (\{ U\} ) =
\sum 
x,\mu 

\biggl[ 
exp

\biggl( 
2
\sqrt{} 
\langle Yx,\mu , Yx,\mu \rangle e

\biggr) 
+ exp

\biggl( 
 - 2
\sqrt{} 

\langle Yx,\mu , Yx,\mu \rangle e
\biggr) 
 - 2

\biggr] 
,

which differs slightly from our definition (4.3). We expect that these two functions
have similar effects since their leading-order term agrees after Taylor expansion. Fur-
ther studies are needed to understand the effects of different distance functions.

4.3. One-dimensional \bfitS \bfitU (\bfitn ) theory. Now we focus on the SU(n) theory,
which is non-Abelian for all n > 1 and is most commonly used in lattice QCD. When
G = SU(n), its Lie algebra g is the space of all traceless skew-Hermitian matrices of
order n, whose dimension m = n2  - 1. The metric on SU(n) is defined by

\langle X1, X2\rangle U =
1

2
tr
\Bigl( 
X\dagger 

1X2

\Bigr) 
\forall U \in SU(n), \forall X1, X2 \in TUG,
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and the complexification of SU(n) is the special linear group SL(n,\BbbC ). In this case,
choosing the distance function as (4.3) may be inconvenient since the calculation of
Cartan decomposition is not straightforward. Therefore we follow [39], which defines
F (\{ U\} ) by

(4.7) F (\{ U\} ) =
\sum 
x\in \scrX 

d\sum 
\mu =0

\bigl[ 
tr
\bigl( 
U\dagger 
x,\mu Ux,\mu 

\bigr) 
 - n

\bigr] 
.

It can be shown that the above quantity equals zero only when all Ux,\mu are in SU(n).
In what follows, we will study the one-dimensional case (d = 0) as an extension of the
work in [13], which also gives some insight into the multidimensional case, as will be
commented on at the end of this section.

For d = 0 with periodic boundary conditions, according to the study in [13], the
manifold M can be characterized as

(4.8) M = \{ (\lambda 1, \lambda 2, . . . , \lambda n) \in \BbbC n | \lambda 1\lambda 2 \cdot \cdot \cdot \lambda n = 1\} .

In fact, the one-dimensional case is highly similar to the one-link case, whose formu-
lation has been given in [4]. In the case of N links, the stochastic differential equation
(defined by It\^o calculus) on M has been derived in [13, eq. (4.9)]:1

(4.9)
1

N
d\lambda j =  - 1\surd 

N

m\sum 
a=1

\lambda jX
a
jj dw

a

 - 

\Biggl[ 
m\sum 

a=1

[(Ka + iJa)Xa
jj + 2eTj X

a\Omega jX
aej ] +

2(n2  - 1)

n

\Biggr] 
\lambda j dt, j = 1, . . . , n.

Here X1, . . . , Xm are the orthonormal basis of g, and Xa
jj is the jth diagonal element

of Xa. The quadratic Casimir invariant is

(4.10)  - 
m\sum 

a=1

XaXa =
2(n2  - 1)

n
I,

where I is the identity matrix. For example, when n = 2, the basis can be chosen
as X1 = i\sigma x, X

2 = i\sigma y, X
3 = i\sigma z, where \sigma x,y,z are Pauli matrices; similarly, when

n = 3, the basis can be chosen as i times Gell-Mann matrices. In (4.9), the matrix
\Omega j is

\Omega j = diag

\biggl\{ 
\lambda 1

\lambda 1  - \lambda j
, . . . ,

\lambda j - 1

\lambda j - 1  - \lambda j
, 0,

\lambda j+1

\lambda j+1  - \lambda j
, . . . ,

\lambda N

\lambda N  - \lambda j

\biggr\} 
,

and Ka, Ja, and wa are defined by

(4.11) Ka =
1

N

\sum 
x\in \scrX 

Ka
x,0, Ja =

1

N

\sum 
x\in \scrX 

Ja
x,0, wa =

1\surd 
N

\sum 
x\in \scrX 

wa
x,0.

Without repeating the details of the derivation in [13], we just mention here that (4.9)
is derived by solving the minimization problem (4.2) analytically, and then coupling
the solution into the CL dynamics.

1Compared with the notations in [13], we have changed the definition of wa so that wa defined
in (4.11) corresponds to the standard Brownian motion. Therefore, compared with equation (4.9) in
[13], an additional coefficient 1/

\surd 
N is seen in front of the first term on the right-hand side of (4.9).
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We would now like to study whether it is possible to localize the probability
density function on M . To clarify the effect of gauge cooling, we first assume that
Ja = 0, which singles out the effect of gauge cooling. In this case, we have the
following result.

Theorem 4.2. If Ja = 0 for all a = 1, . . . ,m in (4.9), we have

d

dt

n\sum 
j=1

| \lambda j | 2 \leq 0

for any initial value \lambda 1(0), . . . , \lambda n(0).

Proof. By replacing the term 2(n2  - 1)/n in (4.9) using (4.10), we can rewrite
(4.9) as

d\lambda j = N

\Biggl[ 
 - 1\surd 

N

m\sum 
a=1

\lambda jX
a
jj dw

a  - 
m\sum 

a=1

\Biggl( 
KaXa

jj + eTj X
aDjX

aej  - 
m\sum 

a=1

(Xa
jj)

2

\Biggr) 
\lambda j dt

\Biggr] 
,

where Dj = diag\{ \lambda 1+\lambda j

\lambda 1 - \lambda j
, . . . ,

\lambda j - 1+\lambda j

\lambda j - 1 - \lambda j
, 0,

\lambda j+1+\lambda j

\lambda j+1 - \lambda j
, . . . ,

\lambda N+\lambda j

\lambda N - \lambda j
\} . Since Xa is skew-

Hermitian, it follows that

d\=\lambda j = N

\Biggl[ 
1\surd 
N

m\sum 
a=1

\=\lambda jX
a
jj dw

a  - 
m\sum 

a=1

\Biggl( 
 - KaXa

jj + eTj X
a \=DjX

aej  - 
m\sum 

a=1

(Xa
jj)

2

\Biggr) 
\=\lambda j dt

\Biggr] 
.

Therefore by It\^o calculus,

d(| \lambda j | 2)= \=\lambda j d\lambda j + \lambda j d\=\lambda j  - 2N

m\sum 
a=1

| \lambda j | 2
\bigl( 
Xa

jj

\bigr) 2
dt =  - 2N

m\sum 
a=1

eTj X
a(\mathrm{R}\mathrm{e}Dj)X

aej | \lambda j | 2 dt.

Summing up the above equation for all j = 1, . . . , n, we obtain

d

dt

n\sum 
j=1

| \lambda j | 2 =  - 2N

n\sum 
j=1

m\sum 
a=1

eTj X
a(ReDj)X

aej | \lambda j | 2

= 2N

n\sum 
j=1

n\sum 
k \not =j

m\sum 
a=1

| \lambda j | 2| Xa
jk| 2 Re

\lambda k + \lambda j

\lambda k  - \lambda j

= 2N

n\sum 
j=1

n\sum 
k \not =j

m\sum 
a=1

| \lambda k| 2| Xa
kj | 2 Re

\lambda j + \lambda k

\lambda j  - \lambda k

= N

n\sum 
j=1

n\sum 
k \not =j

m\sum 
a=1

| Xa
jk| 2(| \lambda j | 2  - | \lambda k| 2)Re

\lambda k + \lambda j

\lambda k  - \lambda j

= N

n\sum 
j=1

n\sum 
k \not =j

m\sum 
a=1

| Xa
jk| 2(| \lambda j | 2  - | \lambda k| 2)

| \lambda k| 2  - | \lambda j | 2

| \lambda k  - \lambda j | 2
\leq 0,

which completes the proof.

This theorem indicates that gauge cooling has introduced additional velocity
which helps confine the probability density function. It can then be expected that
when Ja is small, the probability density function can be localized. A special case
for the SU(2) theory with N = 1 and S(U) =  - (A+ iB) trU for A,B \in \BbbR has been
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considered in a number of references including [12, 4, 13]. When n = 2, the manifold
M defined in (4.8) is identical to \BbbC \setminus \{ 0\} , which turns out to be similar to the com-
plexified U(1) one-link theory. Mimicking the transformations in subsection 3.1, we
can write down the CL dynamics as
(4.12)

dx = K dt+ dw, K = 2

\biggl( 
 - A cosh y sinx+B sinh y cosx+

sin 2x

cosh 2y  - cos 2x

\biggr) 
,

dy = J dt, J =  - 2

\biggl( 
A sinh y cosx+B cosh y sinx+

sinh 2y

cosh 2y  - cos 2x

\biggr) 
,

where x is considered to be periodic with period 2\pi . Let z = x + iy; then the
expectation value of interest is O(z) = eiz+e - iz. In Theorem 4.1 of [13], it was shown
that when (A,B) locates in a certain region, the probability function is localized
and the CL method produces the correct result. For example, in their numerical
experiments with A = 1, when B = 0.2, (A,B) is inside the region, and the CL result
gives correct results for all observables. However, when A,B are chosen such that
the support of probability density function is not compact, [13] also shows that the
CL method may produce a result that is close to the exact integral, but it is unclear
whether the error comes from the bias or the stochastic noise. More precisely, three
cases (A,B) = (1, 2), (5, 1), and (5, 10) are tested in [13], among which only the case
(A,B) = (1, 2) shows a clear bias, while no conclusion is drawn for the other two sets
of parameters.

By our analysis of the model problem in section 2, it can be expected that for
A = 5, the results may also be biased due to the global support of the probability
density function. To confirm this, we carry out the analysis of the decay rate in a way
similar to subsection 2.2. Assume the steady-state probability function generated by
the stochastic differential equation (4.12) is of the form

P (x, y) \approx c(x)e - \beta y,

at large y > 0. Substituting this ansatz into the associated FP equation and consid-
ering only the leading-order terms, we obtain

LTP \approx ey - \beta y (c\prime (x)(B cos(x) - A sin(x)) + (\beta  - 2)c(x)(A cos(x) +B sin(x))) .

Equating this expression to zero, we can solve c(x) as

c(x) = C(B cos(x) - A sin(x))\beta  - 2, C \in \BbbR .

Due to the fact that P (x, y) must be positive, the parameter \beta can only take the value
2. To check whether the solution is biased, we follow the condition (2.14) to check
the growth rate of J and O. When y is large, J(x, y) \propto ey, O(x + iy) \propto ey, whose
product exactly cancels the decay of P (x, y), meaning that the CL method fails to
produce an unbiased result when P (x, y) is not localized.

The behavior of the one-dimensional SU(2) theory turns out to be very similar
to the model problem studied in section 2: when the parameter exceeds a certain
threshold, the distribution of samples is no longer localized, and then a biased result
is produced. To verify this, we again use the numerical method introduced in sub-
section 2.1 to solve the FP equation. When A = 1, the marginal probability density
function Py(y) is plotted in Figure 8, where one can clearly observe that when B
increases, the support of the probability density function turns global at a certain
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Fig. 8. The decay of Py for A = 1.

(a) A = 1 (b) A = 5

Fig. 9. The imaginary part of the observables for A = 1 and A = 5.

point, and the decay rate agrees with our theoretical analysis. Based on the com-
puted probability density function, we compute the observables and show the results
in Figure 9(a), from which one can observe that the CL results deviate from the exact
values smoothly. We have also done the same numerical tests for A = 5, for which the
support of the probability density function is the whole domain for any B > 0. The
results shown in Figure 9(b) confirm the existence of the bias for all A = 5 and B > 0.

In conclusion, for the one-dimensional SU(n) theory, gauge cooling can local-
ize the probability density function for certain parameters, which stabilizes the CL
method in some cases. However, when the parameters are set so that the velocity
pushing samples away from the unitary field is large, the nonvanishing boundary
term may still create bias in the numerical result.

Remark 5. In the multidimensional case, a very similar phenomenon can be ob-
served. In [37], the boundary term of the heavy-dense QCD is studied, which includes
two parameters \beta and \mu , denoting the gauge coupling and the chemical potential,
respectively. These parameters have roles similar to A and B in the above example.
By numerical experiments, it is demonstrated in [37] that when \beta is large, although
the tail of the probability density shrinks, the bias persists. The results in [1] for the
same example show that smaller \mu leads to smaller values of F (\{ U\} ) and more com-
pact distributions of the samples, which also agrees with our observation in Figure 8.
According to the theoretical study in the one-dimensional case, we also expect a range
of \beta and \mu where the CL dynamics with gauge cooling generates correct results, which
need to be further explored in future works.

5. Conclusion and future works. This paper is devoted to the underlying
mechanism of the CL method and the gauge cooling technique. By studying a contro-
versial one-dimensional example, we have made a conclusion on the validity of the CL
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method with respect to its parameters. Meanwhile, it is demonstrated by this exam-
ple that the use of the CL method needs to be extremely careful even for simple cases.
As pointed out in [7, 36], the decay rate of the probability density function must be
carefully monitored in the numerical simulation. A numerical approach to monitoring
this decay has been proposed in [37]. The only situation in which the method can
provide an unbiased result for any observables is that the probability density func-
tion is localized. This occurs when all the velocities on the boundary of a certain
bounded domain point inward, which may appear when the parameter controlling the
magnitude of the imaginary part of the action is small. When the parameter exceeds
a certain threshold, the bias in the result may arise smoothly, making it difficult to
identify the appearance of the numerical failure.

For the lattice field theory, the situation is even worse since the localized probabil-
ity density function does not exist. This reveals the importance of the gauge cooling
technique, which introduces additional velocity that points toward the unitary field.
When gauge cooling is applied, the probability density function may again be localized
for certain parameters, so that the method is applicable for any observables. However,
some limitations of gauge cooling, including its inability for Abelian groups and its
failure in essentially suppressing the tails, is also uncovered by theoretical analysis.

This work also provides possible ideas to further develop the CL method, es-
pecially on the improvement of the dynamical stabilization proposed in [11]. This
method regularizes the CL method by artificially introducing an velocity that pulls
the samples back to the unitary field. This work may shed some light on the selection
of the additional velocity, which should either create a velocity field that localizes the
probability density function or essentially suppress the tail. This will be considered
in our future works.

Appendix A. Proof of Theorem 1.1.

Proof. By condition (H1), we have

\partial 

\partial t

\biggl( 
\partial \scrO 
\partial y

 - i
\partial \scrO 
\partial x

\biggr) 
=

\partial 2

\partial x2

\biggl( 
\partial \scrO 
\partial y

 - i
\partial \scrO 
\partial x

\biggr) 
+Kx

\partial 

\partial x

\biggl( 
\partial \scrO 
\partial y

 - i
\partial \scrO 
\partial x

\biggr) 
+Ky

\partial 

\partial y

\biggl( 
\partial \scrO 
\partial y

 - i
\partial \scrO 
\partial x

\biggr) 
.

By the uniqueness of the solution of the advection-diffusion equation [18], we conclude
that \partial y\scrO = i\partial x\scrO for any x, y, and t since the initial value \scrO (x, y; 0) = O(x + iy)
satisfies the Cauchy--Riemann equations.

For \tau \in [0, t], define

(A.1) F (t, \tau ) =

\int 
\BbbR 
\rho (x; t - \tau )\scrO (x, 0; \tau ) dx.

We would like to show that F (t, \tau ) is independent of \tau , which can be done by calcu-
lating the partial derivative:

\partial 

\partial \tau 
F (t, \tau ) =

\int 
\BbbR 

\biggl[ 
\rho (x; t - \tau )

\partial 

\partial t
\scrO (x, 0; \tau ) - \scrO (x, 0; \tau )

\partial 

\partial t
\rho (x; t - \tau )

\biggr] 
dx

=

\int 
\BbbR 
\rho (x; t - \tau )

\biggl( 
\partial 2

\partial x2
\scrO (x, 0; \tau )+Kx(x, 0)

\partial 

\partial x
\scrO (x, 0; \tau )+Ky(x, 0)

\partial 

\partial y
\scrO (x, 0; \tau )

\biggr) 
dx

 - 
\int 
\BbbR 
\scrO (x, 0; \tau )

\biggl( 
\partial 2

\partial x2
\rho (x; t - \tau ) +

\partial 

\partial x
[S\prime (x)\rho (x; t - \tau )]

\biggr) 
dx.
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The holomorphism of \scrO indicates \partial y\scrO = i\partial x\scrO , inserting which into the above equa-
tion yields

\partial 

\partial \tau 
F (t, \tau ) =

\int 
\BbbR 
\rho (x; t - \tau )

\biggl( 
\partial 2

\partial x2
\scrO (x, 0; \tau ) + S\prime (x)

\partial 

\partial x
\scrO (x, 0; \tau )

\biggr) 
dx

 - 
\int 
\BbbR 
\scrO (x, 0; \tau )

\biggl( 
\partial 2

\partial x2
\rho (x; t - \tau ) +

\partial 

\partial x
[S\prime (x)\rho (x; t - \tau )]

\biggr) 
dx.

According to (H3), we can apply integration by parts to the above result and conclude
that \partial \tau F (t, \tau ) = 0. Therefore F (t, 0) = F (t, t), meaning that\int 

\BbbR 
\rho (x; t)\scrO (x, 0; 0) dx =

\int 
\BbbR 
\rho (x; 0)\scrO (x, 0; t) dx.

Applying the initial conditions of \rho and \scrO , we get\int 
\BbbR 
\rho (x; t)O(x) dx =

\int 
\BbbR 
p(x)\scrO (x, 0; t) dx.

By comparing this equation with (1.10) and (1.8), we see that it remains only to show

(A.2)

\int 
\BbbR 
p(x)\scrO (x, 0; t) dx =

\int 
\BbbR 

\int 
\BbbR 
\scrO (x, y; \tau )P (x, y; t - \tau ) dx dy

for some \tau . This can be done by setting \tau = t, so that the right-hand side of the
above equation becomes\int 
\BbbR 

\int 
\BbbR 
\scrO (x, y; t)P (x, y; 0) dx dy =

\int 
\BbbR 

\int 
\BbbR 
\scrO (x, y; t)p(x)\delta (y) dx dy =

\int 
\BbbR 
\scrO (x, 0; t)p(x) dx,

which is clearly identical to the left-hand side of (A.2).

Appendix B. Proof of Proposition 3.2.

Proof. Given (3.12), we can compute dU\tau 

d\tau by

dU\tau 

d\tau 
= (dLV\tau 

)W\tau 

\biggl( 
dW\tau 

d\tau 

\biggr) 
+ (dRW\tau 

)V\tau 

\biggl( 
dV\tau 

d\tau 

\biggr) 
= (dLV\tau 

)W\tau 

\Bigl( 
(dRW\tau 

)e(Y\tau )
\Bigr) 
+ (dRW\tau 

)V\tau 

\Bigl( 
(dRV\tau 

)e(X\tau )
\Bigr) 

= (dRW\tau 
)V\tau 

\Bigl( 
(dLV\tau 

)e(Y\tau )
\Bigr) 
+ (dRU\tau 

)e(X\tau ).

(B.1)

Using LV\tau 
= RV\tau 

\circ \Psi V\tau 
, one sees that (dLV\tau 

)e(Y\tau ) = (dRV\tau 
)e
\bigl( 
(d\Psi V\tau 

)e(Y\tau )
\bigr) 
, which can

be inserted into (B.1) and yield (3.13) by (dRW\tau 
)V\tau 

\circ (dRV\tau 
)e = (dRU\tau 

)e. Conversely,
if (3.13) is given, then (3.12) holds due to the uniqueness of the Cartan decomposition.

To show (3.14), we write n\tau \in TWr exp(ig) as n\tau = (dRW\tau )e(n
e
\tau ) for some ne

\tau \in ig.
Then by the right translational invariance of the inner product, it can be shown that\biggl\langle 

dW\tau 

d\tau 
, n\tau 

\biggr\rangle 
U\tau 

= \langle Y\tau , n
e
\tau \rangle e,(B.2) \biggl\langle 

dU\tau 

d\tau 
, (dLV\tau 

)W\tau 
(n\tau )

\biggr\rangle 
U\tau 

= \langle X\tau + (d\Psi V\tau 
)e(Y\tau ), (d\Psi V\tau 

)e(n
e
\tau )\rangle e

= \langle (d\Psi V\tau )e(Y\tau ), (d\Psi V\tau )e(n
e
\tau )\rangle e

= \langle (dLV\tau )e(Y\tau ), (dLV\tau )e(n
e
\tau )\rangle e,

(B.3)D
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where the second equality of (B.3) uses the fact that (d\Psi V\tau 
)e maps ig to ig. Note

that the metric is bi-invariant on G, meaning that the left translation (dLV\tau 
)e does

not change the value of the inner product due to V\tau \in G. Therefore (B.2) and (B.3)
are equal, which completes the proof.
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